

Substance name: bis(2-methoxyethyl) ether (Diglyme)

EC number: 203-924-4 CAS number: 111-96-6

SUPPORT DOCUMENT FOR IDENTIFICATION OF BIS(2-METHOXYETHYL) ETHER (DIGLYME) AS A SUBSTANCE OF VERY HIGH CONCERN BECAUSE OF ITS CMR PROPERTIES

NOTE

During the public consultation, in accordance with Article 59 (4) of the REACH Regulation, on the proposed identification of "bis(2-methoxyethyl)ether" as a Substance of Very High Concern (SVHC) on the basis of its classification as toxic for reproduction category 1B no comments were received objecting the conclusion that the substance meets criteria set out in Article 57(c). Therefore, in accordance with Article 59 (6), "bis(2-methoxyethyl)ether" has been included in the Candidate List by ECHA.

The present support document comprises Part I (Justification) of the Annex XV dossier for identification of "bis(2-methoxyethyl)ether" as SVHC on the basis of Article 57(c) of REACH.

CONTENTS

JU	STIF	ICATION	6
1	IDE	NTITY OF THE SUBSTANCE AND PHYSICAL AND CHEMICAL PROPERTIES	6
	1.1	Name and other identifiers of the substance	6
	1.2	Composition of the substance	7
	1.3	Physico-chemical properties	8
2	HAI	RMONISED CLASSIFICATION AND LABELLING	9
3	ENV	/IRONMENTAL FATE PROPERTIES	10
4	HUI	MAN HEALTH HAZARD ASSESSMENT	10
5	ENV	/IRONMENTAL HAZARD ASSESSMENT	10
6	CO	NCLUSIONS ON THE SVHC PROPERTIES	10
	6.1	PBT, vPvB assessment	10
	6.2	CMR assessment	10
	6.3	Substances of equivalent level of concern assessment	10
7	REF	ERENCES	11
8	ТОХ	XICOKINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION)	13
9	ТОХ	XICITY FOR REPRODUCTION	14
	9.1	Effects on fertility	14
	9.2	Developmental toxicity	14
10	ENV	VIRONMENT	14
		TABLES	
		Substance identity	
		Constituents	
Tal	ble 4	: Overview of physico-chemical properties	8
haz	zardo	Classification according to part 3 of Annex VI, Table 3.1 (list of harmonised classification and labelling of us substances) of Regulation (EC) No 1272/2008:	9
Tal	ble 6	: Classification according to part 3 of Annex VI, Table 3.2 (list of harmonized classification and labelling of	•
		us substances from Annex I of Council Directive 67/548/EEC) of Regulation (EC) No 1272/2008:	
Tal	ble 8	Developmental toxicity, key study, overview (according to WHO, 2002)	17
Tal	ble 9	Developmental toxicity, additional studies, overview (according to WHO, 2002).	18

FIGURES

ABBREVIATIONS

CAS Chemical Abstracts Service

CLP Classification, Labelling and Packaging

CMR Carcinogenic, Mutagenic and toxic to Reproduction

CSR Chemical Safety Report

DEGDME Diethylene glycol dimethyl ether (Diglyme)

EC European Community

ECHA European Chemicals Agency

ECETOC European Centre for Ecotoxicology and Toxicology of Chemicals

EEC European Economic Community

EGME Ethylene glycol monomethyl ether

LOAEL Lowest Observed Adverse Effect Level

MAA Methoxyacetic acid

NOAEL No Observed Adverse Effect Level

PBT Persistent, Bioaccumulative and Toxic

SVHC Substance of Very High Concern

US EPA U.S. Environmental Protection Agency

vPvB Very Persistent and very Bioaccumulative

WHO World Health Organization

SVHC SUPPORT DOCUMENT – Bis(2-methoyxethyl) ether

Substance Name(s): bis(2-methoxyethyl)ether (Diglyme, DEGDME)

EC Number(s): 203-924-4 CAS number(s): 111-96-6

• The substance is identified as a substance meeting the criteria of Article 57 (c) of Regulation (EC) 1907/2006 (REACH) owing to its classification as toxic for reproduction 1B.

Summary of how the substance(s) meet(s) the CMR (Cat 1 or 2) criteria:

Bis(2-methoxyethyl)ether (diglyme) is listed as entry 603-139-00-0 in Annex VI, part 3, Table 3.1 (the list of harmonised classification and labelling of hazardous substances) of Regulation (EC) No 1272/2008¹ as Repr. 1B, H360FD (May damage fertility. May damage the unborn child.) This corresponds to a classification as toxic to reproduction Repr. Cat. 2; R60-61 ("May impair fertility; May cause harm to the unborn child") in Annex VI, part 3, Table 3.2 of Regulation (EC) No. 1272/2008 (list of harmonised classification and labelling of hazardous substances from Annex I to Directive 67/548/EEC).

Therefore, this classification of the substance(s) in Regulation (EC) No 1272/2008 shows that the substance meets the criteria for classification as toxic for reproduction in accordance with Article 57 (c) of REACH.

Registration dossiers submitted for the substance? Yes

_

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006

JUSTIFICATION

1 IDENTITY OF THE SUBSTANCE AND PHYSICAL AND CHEMICAL PROPERTIES

1.1 Name and other identifiers of the substance

Table 1: Substance identity

•	
EC number:	203-924-4
EC name:	Bis(2-methoxyethyl)ether
CAS number (in the EC inventory):	111-96-6
CAS number:	111-96-6
CAS name:	Ethane, 1,1'-oxybis[2-methoxy-
IUPAC name:	1-methoxy-2-(2-methoxyethoxy)ethane
Index number in Annex VI of the CLP Regulation	603-139-00-0
Molecular formula:	$C_6H_{14}O_3$
Molecular weight range:	134.17g/mol
Synonyms:	Diglyme
	DEGDME
	Diethylenglycoldimethylether
	Dimethyldiglycol
	2-(2-Methoxyethoxy)-1-methoxyethane
	2,5,8-Trioxanonane
	Di(2-Methoxyethyl) ether
	Dimethyl carbitol
	Ether, bis(2-methoxyethyl)
	1,1'-Oxybis[2-methoxyethane]
	Methyldiglyme
	(CAS registry numbers still in use: 70-992-86-8, 54631-70-8, 142939-39-7 although deleted in CAS registry)

SVHC SUPPORT DOCUMENT – Bis(2-methoyxethyl) ether

1.2 Composition of the substance

Name: bis(2-methoxyethyl)ether

Description: -

Degree of purity: > 80% (m/m)

Table 2: Constituents

Constituents	Typical concentration	Concentration range	Remarks
bis(2-methoxyethyl)ether	> 80% m/m		
EC-No 203-924-4			

Table 3: Impurities

Impurities	Typical concentration	Concentration range	Remarks
Confidential information			

Purity according to website information from Clariant GmbH²: ≥99%.

 $^{^2} http://www.clariant.de/C12575E4001FB2B8/vwLookupDownloads/2000_SpecialSolvents_Newsroom_Brochures_GlymesBrochure.pdf/\$FILE/2000_SpecialSolvents_Newsroom_Brochures_GlymesBrochure.pdf$

1.3 Physico-chemical properties

Table 4: Overview of physico-chemical properties

Property	Value	Remarks		
Physical state at 20°C and 101.3 kPa	Clear liquid with a pleasant odor	from registration*		
Melting/freezing point	-68°C	from registration		
Boiling point	162°C at 1013 hPa	from registration		
Vapour pressure	0.6 hPa at 20°C *	from registration		
Water solubility	Miscible at each ratio pH=7 at 20°C 940 g/l at 20°C	from registration		
Partition coefficient n-octanol/water (log P_{OW})	-0.36 at 25°C	Funasaki, 1984		
Flashpoint	59°C at 102.1 kPa	from registration		
Auto Flammability at 1013hPa	190°C	from registration		
Reactivity	ty Oxidizes readily in air to form unstable peroxides that may explode spontaneously.			
Density	0.943 – 0.945g/cm³ at 20°C	from registration		

^{*}From dissemination database according to Regulation (EC) No.1907/2006, article 119

Conversion factors (20°C, 1014hPa) (Ecetoc, 2005): $1 \text{mg/m}^3 = 0.179 \text{ppm}$

 $1ppm = 5.579mg/m^3$

³ http://www.chemicalbook.com/Search EN.aspx?keyword=111-96-6

2 HARMONISED CLASSIFICATION AND LABELLING

Bis(2-methoxyethyl)ether is covered by index number 603-139-00-0 in Annex VI, part 3 of Reg. (EC) No 1272/2008 (CLP regulation) as follows:

Table 5: Classification according to part 3 of Annex VI, Table 3.1 (list of harmonised classification and labelling of hazardous substances) of Regulation (EC) No 1272/2008:

Index No			EC No CAS No		Classification		Labelling			Notes
	Chemical Identification			and Category	statement code(s)	, 6	statement code(s)	Suppl.	Conc. Limits, M- factors	
	bis(2- methoxyethyl) ether	203-924-4	111-96-6	Flam. Liq. 3 Repr. 1B	H226 H360-FD	GHS08	H226 H360FD	EUH019		

Table 6: Classification according to part 3 of Annex VI, Table 3.2 (list of harmonized classification and labelling of hazardous substances from Annex I of Council Directive 67/548/EEC) of Regulation (EC) No 1272/2008:

Index No	International Chemical Identification	EC No	CAS No	Classification	Labelling	Concentration Limits	Notes
603-139-00-0	bis(2-methoxyethyl) ether	203-924-4	111-96-6	R10 R19 Repr. Cat. 2; R60-61	T R: 60-61-10-19 S: 53-45		

3 ENVIRONMENTAL FATE PROPERTIES

Not relevant for the identification of the substance as SVHC in accordance with Article 57(c).

4 HUMAN HEALTH HAZARD ASSESSMENT

Not relevant for the identification of the substance as SVHC in accordance with Article 57(c).

5 ENVIRONMENTAL HAZARD ASSESSMENT

Not relevant for the identification of the substance as SVHC in accordance with Article 57(c).

6 CONCLUSIONS ON THE SVHC PROPERTIES

6.1 PBT, vPvB assessment

Not relevant

6.2 CMR assessment

Bis(2-methoxyethyl)ether (diglyme) is listed as entry 603-139-00-0 in Annex VI, part 3, Table 3.1 (list of harmonised classification and labelling of hazardous substances) of Regulation (EC) No 1272/20084 as Repr. 1B, H360FD (May damage fertility. May damage the unborn child.) . This corresponds to a classification as toxic to reproduction Repr. Cat. 2; R60-61 ("May impair fertility; May cause harm to the unborn child") in Annex VI, part 3, Table 3.2 of Regulation (EC) No. 1272/2008 (list of harmonised classification and labelling of hazardous substances from Annex I to Directive 67/548/EEC)

Therefore, this classification of the substance(s) in Regulation (EC) No 1272/2008 shows that the substance meets the criteria for classification as toxic for reproduction in accordance with Article 57 (c) of REACH.

6.3 Substances of equivalent level of concern assessment

Not relevant.

_

⁴ Regulation (Ec) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006

7 REFERENCES

Cheever KL et al. Testicular effects of bis(2-methoxyethyl)ether in the adult male rat: equimolar dose comparison with 2-methoxyethanol and 2-ethoxyethanol. Toxicologist 5: 140, 1985.

Cheever KL et al. Testicular effects of bis(2-methoxyethyl)ether in the adult male rat. Toxicology and industrial health, 5: 1099-1109, 1989.

Clariant GmbH. Glycols, mono and dialkyl glycol ethers; Ethylenglyokole, Mono- und Dialkylglykolether

 $\frac{http://www.seap.clariant.com/C12575E4001FB2B8/vwLookupDownloads/2000_SpecialSolvents_Newsroom_Brochure_s_GlymesBrochure.pdf/\$FILE/2000_SpecialSolvents_Newsroom_Brochure_glymesBrochure.pdf}$

Driscoll et al. Developmental toxicity of diglyme by inhalation in the rat. Drug Chem Toxicol. May;21(2):119-36, 1998.

DuPont. Teratogenicity study of diglyme in the rat. Newark, NJ, E.I. Du Pont de Nemours Co., 289pp, 1988a.

DuPont. Subchronic inhalation toxicity study with diglyme. Newark, NJ, E.I. Du Pont de Nemours Co., 445pp, 1988b.

DuPont. Subchronic inhalation toxicity study with diglyme. Newark, NJ, E.I. Du Pont de Nemours Co., 187pp, 1989.

ECETOC Technical Report No. 95. The Toxicology of Glycol Ethers and its Relevance to Man (Fourth Edition). February 2005.

Hardin BD et al. Relative potency of four ethylene glycol ethers for induction of paw malformations in the mouse. Teratology 33: 85c, 1986.

Hardin BD et al. Relative potency of four ethylene glycol ethers for induction of paw malformations in the mouse. Teratology 35: 321-328, 1987.

Larese Filon F. et al. Skin absorption in vitro of glycol ethers. Int. Arch. Occup. Environ. Health. Oct 72(7): 480-4, 1999.

McGregor DB et al. Bis-2-methoxyethyl ether and 2-methoxy ethanol results from multiple assays for genotoxic potential. Environmental mutagenesis, 3: 381-381, 1981.

McGregor DB et al. Genetic effects of methoxyethanol and bis(2-methoxyethyl)ether. Toxicology and applied pharmacology, 70: 303-316, 1983.

NTP. Teratologic evaluation of diethylene glycol dimethyl ether (CAS No. 111-96-6) administered to CD-1 mice on gestation day 6 through 15. Research Triangle Park, NC, National Institute of Environmental Health Sciences, National Toxicology Program (NTP-85-5-255, PB86-135233), 1985.

NTP. Teratologic evaluation of diethylene glycol dimethyl ether (CAS No. 111-96-6) administered to New Zealand White rabbits on gestation day 6 through19.. Research Triangle Park, NC, National Institute of Environmental Health Sciences, National Toxicology Program (NTP-87-108; PB 87-209532), 1987.

Plasterer et al. Developmental toxicity of nine selected compounds following prenatal exposure in the mouse: naphthalene, p-nitrophenol, sodium selenite, dimethyl phthalate, ethylenethiourea, and four glycol ether derivates. Journal of toxicology and environmental health, 15: 25-38, 1985.

Price et al. The developmental toxicity of diethylene glycol dimethyl ether in mice. Fundamental and applied toxicology, 8: 115-126, 1987.

Schuler et al. Results of testing fifteen glycol ethers in a short-term in vivo reproduction assay. Environmental health perspectives, 57: 141-146, 1984.

Schwetz et al. The developmental toxicity of diethylene and triethylene glycol dimethyl ethers in rabbits. Fund, Appl. Toxicol. Aug 19(2):238-45, 1992.

SRC in HSDB. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB

Sullivan J.B. and Krieger G.R. Clinical environmental health and toxic exposure. Lippincott Williams and Wilkins 2001.

U.S. Environmental Protection Agency HPV Challenge Program 201-15023, Diglyme. 2003.

Valentine R. et al. Subchronic inhalation toxicity of diglyme. Food and chemical toxicology, 37 (1): 75-86, 1999.

WHO Diethylene Glycol Dimethyl Ether, CICAD 41, 2002.

ANNEX I

SUPPLEMENTARY INFORMATION ON TOXICOKINETICS, TOXICITY FOR REPRODUCTION AND NON-CLASSIFICATION FOR THE ENVIRONMENT

8 TOXICOKINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION)

Diglyme is readily absorbed by oral, dermal and inhalation route of exposure (low molecular weight, excellent solvating properties, logPow, see section 1.3 physico-chemical properties). Diglyme is rapidly and completely absorbed from the gastrointestinal tract (US EPA, 2003). Dermal absorption of glycol ether liquids or vapours is very high. With a permeability constant of 1x10⁻³ cm/h and a lag time of approximately half an hour diglyme is among the glycol ethers with the highest percutaneous absorption rates (Larese Filon et al, 1999; WHO, 2002).

Glycol ethers in general are readily distributed throughout the body and eliminated through the urine. No substantial accumulation of the parent compound has been observed (ECETOC, 2005).

The metabolic pathway is shown in figure 1. The main metabolite is 2-methoxyethoxyacetic acid. The reproductive toxicity of diglyme is attributed to the minor metabolite 2-methoxyacetic acid, which is generated from 2-methoxyethanol. The metabolite 2-methoxyacetic acid has shown evidence of accumulation in animals and humans. In humans its half-life was calculated as 77.1h (ECETOC, 1995, WHO, 2002).

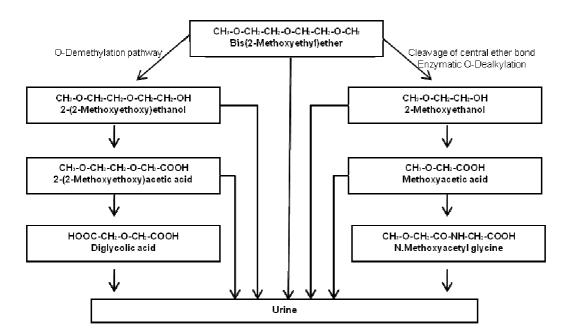


Figure 1: Metabolism and disposition of diglyme (WHO, 2002; Sullivan, 2001).

Digyme is a developmental toxicant in rats and mice but at higher doses, compared to other glycol ethers. This may be explained by the low levels of the metabolites 2-methoxyethanol (EGME) and methoxyacetic acid (MAA) formed (ECETOC, 2005).

9 TOXICITY FOR REPRODUCTION

9.1 Effects on fertility

The reproductive organs of male animals are a specific target for diglyme. Several well conducted studies are available and summarized in Table 19.

From these studies the NOAEL for effects on the testis/spermatocytes is 30ppm (167mg/m³).

9.2 Developmental toxicity

Diglyme is a developmental toxicant by the inhalatory and the oral route in rat, mice and rabbits. An overview of relevant studies is given in Table 20 (key study) and Table 21.

Oral exposure of New Zealand White rabbits to diglyme at 25 mg/kg bw/day produced no adverse maternal or developmental effects. Doses of 50 and 100 mg/kg bw/day were associated with adverse developmental effects but did not produce distinctive evidence of maternal toxicity. At 175 mg/kg bw/day developmental effects were accompanied by increased maternal toxicity. The principal manifestations of developmental toxicity were increased resorptions and higher incidence of major malformations among surviving foetuses with a NOAEL_{fetal} of 25 mg/kg bw/day (NTP, 1987). In 1992 Schwetz et al. published the NTP data with a diverging interpretation of the results showing a dose related developmental toxicity with a NOAEL_{maternal} of 25 mg/kg bw/day and a NOAEL_{fetal} of 50 mg/kg bw/day.

10 ENVIRONMENT

Diglyme is not classified as hazardous to the environment. The EU-Working Group has decided that there are insufficient data in order to classify (SUMMARY RECORD Commission Working Group on the Classification and Labelling of Dangerous Substances, 1999, ECBI/60/99 Rev. 4).

The available registration data support the non-classification for environmental effects.

Table 7: Fertility, study overview.

Species	Route of exposure	Dose/ Concentration	Observations, effects	NOAEL	Reference
rat (Crl:CD) male 20 animals/group	Inhalation 6h/day 5days/week for 2 weeks 84 days post exposure	0, 110, 370, 1100ppm	370ppm (2065mg/m³) and 1100ppm : absolute weight of testis, epididymides. Seminal vesicles and prostate ↓ 1100ppm (6138mg/m³): relative weight of testes ↓, testicular atrophy (all spermatogenic stages affected) Effects were reversible within 84 days (but not at 1100ppm).		DuPont (1988b), Valentine et al., (1999)
rat (Crl:CD) male 20 animals/group	Inhalation 6h/day 5days/week for 2 weeks 14 days post exposure	0, 3, 10, 30, 100ppm	Some effects (degenerative germ cells in epididymal tubules, spermatic granuloma in the epididymis, prostatitis) occurred at concentrations below 100ppm, most lesions were minimal to mild. It is not clear whether the different lesions observed occurred in the same or different animals. 100ppm (558mg/m³): mean body weight ↓, mild testicular atrophy	30ppm (167mg/m³)	DuPont (1989)
rat (CD) male 10 animals/group	Inhalation 7h/day 5days	0, 250, 1000ppm	Dominant lethal test (males were mated at weekly intervals for 10 weeks with untreated females, females killed 17days after mating) 1000ppm (5580mg/m³): reduced body weight in male rats; pregnancy frequency in mated female rats was only		McGregor et al. (1981, 1983)

mice (B6C3F1)	Inhalation 7h/day	0, 250, 1000ppm	about 10% in week 5 to 7 after exposure, preimplantation losses Recovery in exposed males was completed in week 10. Sperm isolation on day 35 after exposure Mice of both exposure groups showed a reduction in body weight gain. 4 mice of 1000ppm exposure group died on	McGregor et al. (1981, 1983)
	4 days		exposure day 4. 1000ppm: morphologically altered sperm (32%; control 5%) (all categories of abnormalities involved but most frequent were amorphous heads)	
rats (Sprague- Dawley) male 5 animals per group	Oral 20 days	684mg/kg bw 8week recovery	Primary and secondary spermatocyte degeneration, spermatidic giant cells, reduced testis to body weight ratio from day 12 till end of study, testicular LDH-X activity by day 18 \$\right\right\$	Cheever at al. (1985, 1989)

[↓] decreased compared with controls

[↑] increased compared with controls

Table 8: Developmental toxicity, key study, overview (according to WHO, 2002).

Species	Route of exposure	Dose/ Concentration	Observations, effects	Maternal NOAEL	Fetal NOAEL/ LOAEL	Reference
Rabbits (New Zealand) Female 15-25 animals/group	Gavage in distilled water Days 6-19	0, 25, 50, 100, 175mg/kg bw	50 mg/kg body weight: dams: weight gain ↓ (due to decrease in gravid uterine weight), adversely affected implants per litter ↑ (21.4%, controls 7.9%) 100 mg/kg body weight: gravid uterine weight ↓, prenatal mortality (mainly from resorptions) ↑, malformations ↑ (mainly abnormal development of the kidneys and axial skeleton and clubbing of the limbs) 175 mg/kg body weight: dams: faecal output ↓, mortality ↑ (15%, controls 4%) Evidence of maternal toxicity was observed only at 175mg/kg/day.	NOAEL 100mg/kg bw	NOAEL 25mg/kg bw	NTP (1987) cited in WHO, 2002
			New evaluation of NTP (1987) performed by Schwetz et al.(1992)	NOAEL 25mg/kg bw	NOAEL 50mg(kg bw	Schwetz et al. (1992)

[↓] decreased compared with controls

[↑] increased compared with controls

Table 9: Developmental toxicity, additional studies, overview (according to WHO, 2002).

Species	Route of exposure	Dose/ Concentration	Observations, effects	Maternal NOAEL	Fetal NOAEL/L OAEL	Reference
Rats (CD), female 25-26 animals/group	Inhalation 6h/day days 7-16	0,25, 100, 400ppm (0, 140, 558, 2232mg/m³)	25 ppm (140 mg/m3): fetal weights ↓, variations (delayed ossification, rudimentary ribs) (mean percentage of fetuses per litter with variations): 44.5% versus controls 32.1% 100 ppm (558 mg/m3): dams: relative liver weight ↑, fetus: structural malformations, mainly skeletal (abnormally formed tails, distended lateral brain ventricles, axial skeletal malformations, appendicular malformations [bent limbs], 6.2% compared with 1.7% in controls); fetal weight ↓; variations (mean percentage of fetuses per litter with variations): 74.5% versus controls 32.1% 400 ppm (2232 mg/m3): dams: food consumption ↓, body weight gain ↓; resorptions 100%	NOAEL 25ppm (140mg/m³)	LOAEL 25ppm (140mg/m³)	DuPont (1988a) cited in WHO, 2002 Driscoll et al. (1998)
mice CD-1	gavage in distilled	0, 62.5, 125, 250, 500 mg/kg	125 mg/kg body weight: fetal weights ↓	NOAEL	NOAEL 62.5 mg/kg	NTP (1985), Price et al.

SVHC SUPPORT DOCUMENT – Bis(2-methoyxethyl) ether

20–24 animals/group	water, days 6–15	bw	250 mg/kg body weight: dams: weight gain ↓ (due to decrease in gravid uterine weight); late fetal deaths ↑, malformations ↑ (mainly neural tube, limbs and digits, craniofacial structures, abdominal wall, cardiovascular system, urogenital organs, axial and appendicular skeleton) 500 mg/kg body weight: dams: weight gain (due to decrease in gravid uterine weight) ↓; resorptions ↑	500 mg/kg bw	bw	(1987)
mice CD-1 not given	gavage in distilled water, single application on day 11	0, 537 mg/kg bw	only examination for gross external malformations and fetal body weight 537 mg/kg body weight: malformations ↑ (paws, digits)			Hardin et al. (1986, 1987)
mice CD-1 49 animals/group	gavage in distilled water, days 6–13	0, 3000 mg/kg bw	reproductive screening according to Chernoff and Kavlock, no systematic examination for malformations 3000 mg/kg body weight: dams: mortality ↑ (20/49); no viable litters (0/27)			Schuler et al. (1984), Plasterer et al. (1985), Hardin et al. (1987)

[↓] decreased compared with controls

[↑] increased compared with controls