Annex	Point IIIA 10.1.3.2	Biodegradation in freshwater	
		IIIA 10.1.3.2 Water/sediment degradation test	
1	REFERENCE		Official use only
1.1	Reference	Hiler, T. and Lomax, R. 2016. Aerobic Aquatic Metabolism of [¹⁴ C]- imiprothrin.	
1.2	Data protection	Yes	
1.2.1	Data owner	Sumitomo Chemical Company Ltd.	
1.2.2	Criteria for data protection	Data submitted to the MS after 13 May 2000 on existing a.s. for the purpose of its entry into the Union list	
2	GUIDELINES AN	D QUALITY ASSURANCE	
2.1	Guideline study	Yes. OECD 308. Aerobic and Anaerobic Transformation in Aquatic Sediment (Apr 2002).	
2.2	GLP	Yes)
2.3	Deviations	No deviations from guideline quoted in the study report.	
3	MATERIALS ANI	DMETHODS	
3.1	Test material	(1 <i>R</i>)- <i>cis</i> -[cyclopropyl-1- ¹⁴ C]-imiprothrin and (1 <i>R</i>)- <i>trans</i> -[cyclopropyl-1- ¹⁴ C]-imiprothrin.	
3.1.1	Lot/Batch number	Lot numbers	
3.1.2	Specification	(1 <i>R</i>)- <i>cis</i> -[cyclopropyl-1- ¹⁴ C]-imiprothrin: Specific activity: (1 <i>R</i>)- <i>trans</i> -[cyclopropyl-1- ¹⁴ C]-imiprothrin. Specific activity:	
3.1.3	Purity	(1 <i>R</i>)- <i>cis</i> -[cyclopropyl-1- ¹⁴ C]-imiprothrin: (immediately before treatment), (immediately after treatment) by HPLC. (1 <i>R</i>)- <i>trans</i> -[cyclopropyl-1- ¹⁴ C]-imiprothrin. (immediately (immediately))	
		before treatment), (immediately after treatment) by HPLC.	4
3.1.4	Further relevant	Molecular weight 318.37 g/mol.	
	properties	Solubility in water 95.3 mg/L at 25° C (<i>trans/cis</i> = 4/1).	
3.1.5	Radiolabelling	The position of the ¹⁴ C labels are shown below:	
		(1R)-cis-[imidazolidiny1-5-14C]-imiprothrin	
		(1R)-trans-[cyclopropyl-1-14C]-imiprothrin	
		The two radiolabelled isomers (1 <i>R</i>)- <i>cis</i> -[imidazolidinyl-5- ¹⁴ C]- imiprothrin and (1 <i>R</i>)- <i>trans</i> -[cyclopropyl-1- ¹⁴ C]-imiprothrin were used separately.	

Annex	Point IIIA 10.1.3.2	Biodegradation in freshwater IIIA 10.1.3.2 Water/sediment degradation test	
3.1.6	Method of analysis	HPLC - Capcell Pak C-18 UG-120 column (250 mm x 4.6 mm, 5 μm), 25°C, mobile phase – gradient system a) 0.005% Pic A Reagent in HPLC grade water, b) Acetonitrile (HPLC grade), c) Methanol (HPLC grade), 0 mins 100% a), 5 mins 100% a), 10 mins 95% a) 5% b), 30 mins 60% a) 40% b), 45 mins 30% a) 70% c), 50 mins 30% a) 70% c), 55 mins 30% b) 70% c), 70 mins 30% b) 70% c), 72 mins 100% a). Flow rate 1 mL/min, co-chromatography with authentic reference standards (UV 230 nm), ¹⁴ C detection - β -RAM flow-through detector (2 mL/min, cell size 500 µL).	
3.2	Reference substance		
3.2.1	(1 <i>R</i>)-trans- Imiprothrin	Structure: $\searrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
3.2.2	(1 <i>R</i>)-cis- Imiprothrint	Structure:	
3.2.3	ωt-COOH -1 <i>R-</i> trans- PRA	Structure:	
		Lot no. Certificate of analysis – Yes.	
3.2.4	ωc-COOH-1 <i>R-cis-</i> PRA	Structure: Lot no. Certificate of analysis – Yes.	
		Structure:	
		Lot no. Certificate of analysis – Yes.	
1.000		Structure:	
		Lot no. Certificate of analysis – Yes.	
	.	Structure:	
		Lot no. Certificate of analysis – Yes.	
		Structure:	
		Lot no. Certificate of analysis – Yes.	

Page 2 of 60

Annex Point IIIA 10.1.3.2		Biodegradation in freshwater	
11	Tost System	IIIA 10.1.3.2 Water/sediment degradation test	-
3.3.1	Test system	Two natural aquatic water/sediment, collected from sites in the US, were used as test systems for the study. The test systems were selected to provide contrasting properties with respect to particle size distribution, organic carbon content and pH. Sediments were sampled to a depth of 0- 5 cm and sieved to 2 mm and the water samples passed through a 0.2 mm sieve during sampling. The water/sediment systems were transported to the test facility and upon arrival were stored refigerated (typically <4°C) in the dark until use in the study.	x
3.3.2	Characterisation of test system	The physicochemical characteristics of the water/sediment systems, determined by Agvise Laboratories Inc., are summarised in Table 1.	
3.4	Study design		
3.4.1	Experimental set-up	Individual samples of the water/sediment systems were prepared in amber narrow neck glass bottles (250 mL capacity). Samples contained ~102 g (50 g dry weight equivalent) of the Goose River sediment and ~98 mL of Goose River water, whereas the golden lake (GL) samples contained ~ 76 g (50 g dry weight equivalent) of the sediment and ~129 mL of the corresponding water (to obtain a water/sediment volume ratio of approximately 3:1 in both systems).	
		Each sample was connected to an individual series of traps for continuous aeration/trapping throughout the study. A peristaltic pump was used to pull humidified air through the samples. Ambient air continuously passed through the water layer of the samples through de- ionized water before flushing the headspace of the samples and through the traps to collect volatile degradates. Each set of traps included one foam plug trap and one ethylene glycol (EG) trap to collect organic volatiles, and two 10% aqueous NaOH caustic traps to collect CO ₂ .	
		The test systems were stored at 20±2°C in a walk in chamber in the dark.	
3.4.2	Equilibration to the study conditions	The test systems were equilibrated in the experimental conditions for 31 days before treatment with the test substances.	
3.4.3	Test substance application	The average target dose rate for the study was $0.123 \ \mu g/g$. The dose rate was based on the rate needed to obtain sufficient sensitivity to detect degradates formed at approximately 1 to 2% of the applied radioactivity and to be below the solubility limit of the test substance. The maximum expected single field application rate (PEC _{STP/SW} 0.105 $\mu g/L$) for direct application indoors with possible access to a body of water via sewage treatment plants (STP), drains, surface water (SW), and etc. was increased so as to detect and quantitate reliably the presence of low level degradates with a dose rate of 0.123 $\mu g/g$.	
		Aliquots of the application solution were taken prior to, during and after application and radioassayed by liquid scintillation counting (LSC) to determine the application rate and to demonstrate homogeneity of the test solution during the application process.	
		The dosing solution (100 μ L) was added directly to the test systems.	

Annex	Point IIIA 10.1.3.2	Biodegradation in freshwater IIIA 10.1.3.2 Water/sediment degradation test	
3.4.4	Monitoring of experimental conditions	The dissolved oxygen (DO), pH and redox potential (ORP, platinum electrode with quinhydrone standard solutions) of the water layers were measured as well as the pH and ORP of the sediment of each sample. The results are shown in Table 3.	
3.4.5	Determination of microbial activity	The untreated sediment was analyzed for microbial viability at the time of collection, prior to dosing, and at the conclusion of the study following the substrate- induced respiration (SIR) method (production rate of CO ₂ after glucose addition) as defined by Anderson and Domsch ¹ . Microbial biomass results are presented in Table 1.	
3.5	Sampling		
3.5.1	Sampling intervals	Samples were collected immediately after treatment (time 0) and after 1, 2, 6, 13, 60, and 101 days of incubation at 20 ± 2 °C. A schedule of events is presented in Table 2.	
		At each sampling time, duplicate samples were removed from the constant temperature chamber along with their respective volatile traps. Monitoring of dissolved oxygen, pH and redox potential was conducted as described in Section 3.4.4.	
3.5.2	Control samples	No control samples used.	
3.5.3	Collection of volatile trapping solutions	Volatile traps were replenished at each sampling interval. Sampled traps quantified by liquid scintillation counting (LSC).	
3.6	Method of analysis		
3.6.1	Extraction procedures	The water layers were carefully decanted (volume measured) from the sediment and acidified to pH 2 using 6M HCl prior to storage. The water layer was quantified by LSC.	
		The sediment layer was extracted with acetonitrile:0.1N HCl $(3x100 \text{ mL}, 5:1 \text{ v/v})$ by shaking (60 mins) and centrifugation. The sediment extracts were quantified by LSC.	
3.6.2	Sample work-up	Sub-samples (30 mL) of the water layer were concentrated using a solid phase extraction (SPE) cartridge (strata-x), eluting with methanol (6 mL). The final water layer extract was quantified by LSC.	
		Sub-samples (40 mL) of the sediment extracts were concentrated by speed vacuum to the aqueous layer. The extracts were rinsed with acetonitrile (2x 500 μ L) and combined with the extract. The concentrated sediment extract was quantified by LSC.	

¹ Anderson, J.P.E., and Domsch, K.H., A physiological method for the quantitative measurement of microbial biomass in soil, Soil Biol. Biochem. 10, 215-221, 1978.

Г

Annex	Point IIIA 10.1.3.2	Biodegradation in freshwater	
		IIIA 10.1.3.2 Water/sediment degradation test	-
3.6.3	Analytical method, primary (HPLC)	Concentrated water and sediment extracts were analysed using the HPLC method outlined in Section 3.1.6.	
		The following modified method was utilised for identification of unknown metabolites:	
		HPLC - Capcell Pak C-18 UG-120 column (250 mm x 4.6 mm, 5 μm), 25°C, mobile phase – gradient system a) 0.2% TFA in HPLC grade water, b) 0.2% TFA in acetonitrile (HPLC grade), c) 0.2% TFA in methanol (HPLC grade), 0 mins 100% a), 5 mins 100% a), 10 mins 95% a) 5% b), 30 mins 60% a) 40% b), 45 mins 30% a) 70% c), 50 mins 30% a) 70% c), 55 mins 30% b) 70% c), 70 mins 30% b) 70% c), 72 mins 100% a). Flow rate 1 mL/min, co-chromatography with authentic reference standards (UV 230 nm), ¹⁴ C detection - β-RAM flow-through detector (2 mL/min, cell size 500 µL).	
		The following normal phase HPLC method was utilised for the determination of the isomer ratio:	
		Chiralcell OJ-H column, 40°C, mobile phase – isocratic system hexane:isopropanol (9:1 v/v). Flow rate 1 mL/min, UV 230 nm, ¹⁴ C detection - β -RAM flow-through detector (2 mL/min, cell size 500 μ L).	
3.6.4	Analytical method, secondary (TLC)	Confirmatory analysis was conducted on selected water layer samples using the following system	
		2D-TLC – sample volume (100 μ L), EMD Silica Gel 60 F254 pre-coated 20 cm x 20 cm x 250 μ m thickness TLC plates, solvent system – a) butanol:acetic acid:water (6:1:1 v/v/v), b) chloroform:acetonitrile:acetic acid (9:1:1 v/v/v), detection using Storm Phosphorimaging system, co chromatography with authentic reference standards.	
3.6.5	LC/MS confirmation	Full scan MS experiments were conducted using a Thermo Scientific Q- Exactive mass spectrometer interfaced with a Thermo Scientific, Dionex Ultimate 3000 UHPLC system.	
		HPLC - Capcell Pak C-18 UG-120 column (250 mm x 4.6 mm, 5 μm), 25°C, mobile phase – gradient system a) 0.2% formic acid in HPLC grade water, b) 0.2% formic acid in acetonitrile (HPLC grade), , 0 mins 100% a), 5 mins 100% a), 10 mins 95% a), 30 mins 60% a), 45 mins 30% a), 50 mins 30% a), 55 mins 0% a), 70 mins 0% a), 72 mins 100% a), Flow to MS 90%.	
		For identification of unknown metabolites, mass spectral data was generated by electrospray ionization (ESI) in the positive polarity. Full scan MS analysis was conducted at a resolving power of 70,000 over a scan range of $m/z = 50$ to 750. Fractions for LSC were collected at a rate of three per minute (20 seconds per fraction).	
3.6.6	Method of analysis for extracted sediment	The residual sediments were weighed and the unextracted radioactivity remaining in the sediments (4 x 0.1g to 0.5 g aliquots) were determined by combustion and subsequent radioassay by LSC. Combustion analysis was carried out using a Biological Oxidizer (R.J. Harvey Instrument Corporation) and the ¹⁴ CO ₂ generated was trapped with Harvey cocktail. The ¹⁴ C content was determined by LSC.	

Annex	Point IIIA 10.1.3.2	Biodegradation in freshwater	
		IIIA 10.1.3.2 Water/sediment degradation test	
3.6.7	Bound residues fractionation	The post extracted sediment (PES) of <i>cis</i> GL, <i>trans</i> GR, and <i>trans</i> GL from the final time point, except <i>cis</i> GR at day 60 were subject to soxhlet extraction, using a final volume of 125ml of 1M acetic acid. Sediments were weighed into cellulose thimbles and extracted for 2 hours. Aliquots of the soxhlet extracts were radioassayed by LSC.	
		(acetonitrile:0.1M HCl, $(5:1, v/v)$ was characterized by humic/fulvic acid partitioning ² . An aliquot (approximately 5.0g) of the PES was shaken overnight on a wrist-action shaker with ~ 25 mL of 0.5 M NaOH. After separation by centrifugation, the pellet was washed with 0.5 M NaOH, centrifuged again and the caustic solutions were combined. The radioactivity in the pellet was termed as the humin fraction. The resulting alkaline extracts were acidified to pH 1 with 12 M HCl and left to stand at room temperature overnight. Upon standing, coagulants formed are the humic acids which were isolated by centrifugation. The supernatants (alkali extractable but soluble in acid) were the fulvic acid fraction. The isolated coagulants i.e. the humic acids were dissolved in measured volumes of 0.5M NaOH (alkali extractable and insoluble in acid). Aliquots of the humic and fulvic acids fractions were radioassayed by LSC.	
3.7	Degradation kinetics	-	
3.7.1		DT ₅₀ and DT ₉₀ values for (<i>cis</i> and <i>trans</i>) imiprothrin in the water layer and the total test system, were calculated using suitable software (KinGui, version 2.2012.320.1629) in consideration of the FOCUS Approach on Degradation Kinetics ³ .	х
4	RESULTS		
4.1	Recovery of applied radioactivity (mass balance)	The total recovery of applied radioactivity (mass balance) from the test systems (Goose River and Golden Lake) treated with [<i>cis</i> - ¹⁴ C]-Imiprothrin and [<i>trans</i> - ¹⁴ C]-Imiprothrin test susbstance are presented in Tables 4 to 7.	Х

² Schnitzer, M., Organic Matter Characterization, in "Methods for Soil Analysis, Part 2, Chemical and Microbiological Properties," 2nd edition, Pages 582-584, Page A.L., Miller R.H. and Keeney, D.R. Editors, ASA, SSSA Publisher, Madison, WI, 1982.

³ Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration, Forum for the Co-ordination of pesticide fate models and their Use (FOCUS), Version 2.0, June 2006.

Anne	x Point IIIA 10.1.3.2	Biodegradation in freshwater	
4.2	Distribution of applied radioactivity	Most of the applied radioactivity was detected in the water layers and steadily dissipated to the sediment layer.	
		The level of applied radioactivity extractable from the sediment layer were at a maximum at 6d in the test systems treated with [<i>cis</i> - ¹⁴ C]-Imiprothrin and comprised 43.2 and 25.0% AR for the Goose River and Golden Lake systems, respectively.	x
		The level of applied radioactivity extractable from the sediment layer were at a maximum at 13d in the test systems treated with [<i>trans</i> - ¹⁴ C]-Imiprothrin and comprised 31.1 and 17.0% AR for the Goose River and Golden Lake systems, respectively.	x
		The level of applied radioactivity as bound residues in the test systems treated with [<i>cis</i> - ¹⁴ C]-Imiprothrin were at a maximum at 60d and 101d for the Goose River and Golden Lake systems, respectively and comprised 28.3 and 35.8% AR.	
		The level of applied radioactivity as bound residues in the test systems treated with [<i>trans</i> - ¹⁴ C]-Imiprothrin were at a maximum at 101d for the Goose River and Golden Lake systems, respectively and comprised 26.2 and 35.7% AR.	x
		¹⁴ C-Carbon dioxide was evolved from each test system, reaching a maximum after 101d incubation. In the [<i>cis</i> - ¹⁴ C]-Imiprothrin treated systems levels of 39.9 and 44.5%AR were obtained in the Goose River and Golden Lake systems, respectively, in the [<i>trans</i> - ¹⁴ C]-Imiprothrin treated systems the corresponding levels were 52.3 and 39.9% AR.	
		Applied radioactivity recovered in the ethylene glycol and foam plug trap solutions was insignificant throughout the study and represented an average of $< 0.3\%$ AR in all treated samples.	

Annex	Point IIIA 10.1.3.2	Biodegradation in freshwater
		IIIA 10.1.3.2 Water/sediment degradation test
4.2.1	Fractionation of sediment bound residue	Results for the humic/fulvic partition are presented in Table 8. The post extracted sediment (PES) of <i>cis</i> Golden Lake, <i>trans</i> Goose River, and <i>trans</i> Golden Lake from the final time point, except <i>cis</i> Goose River at day 60 were subject to soxhlet extraction.
		Humic/fulvic acid partition was performed on day 60 time point for the <i>cis</i> GR and day 101 for the <i>cis</i> GL sediment and day 101 time point for the <i>trans</i> GR and GL sediment samples to further characterize the non-extractable residues in the soils. The results of the partition showed that the majority of the radiocarbon was present in the insoluble humin fraction, i.e. between 0.6% and 1.9% AR. Only 0.4% AR to 1.2% AR was found in the fulvic acid fraction and 0.1 to 0.2% AR in the humic acid fraction.
4.3	Profile of components	The profile of components recovered from the test systems are presented in Table 9.
		For the total system (i.e. water and sediment layers overall) of the Goose River and Golden Lake test systems treated with [<i>cis</i> - ¹⁴ C]-Imiprothrin, the level of imiprothrin detected declined from an average of 82.8 and 76.2% AR, respectively, at 0d to 0.7 and 0.5% AR at the end of the study (i.e. 101d). Two major (i.e. >10% AR) degradation product were observed, (maximum of 20.2% at 13d and 21.6% AR at 6d) and PG (maximum of 13.0% AR in Goose River at 31d). In addition, CPG was observed as a major metabolite (maximum of 43.1 and 46.0% AR at 31d). Other unknown peaks were detected as minor degradates throughout the study, but no individual peak represented >5% AR at two consecutive sampling intervals or >5% AR and increasing at the end of the study in each fraction of the water layer and the sediment extracts.
		For the total system (i.e. water and sediment layers overall) of the Goose River and Golden Lake test systems treated with [<i>trans</i> - ¹⁴ C]-Imiprothrin, the level of imiprothrin detected declined from an average of 98.7 and 81.8% AR, respectively, at 0d to <lod (i.e.<br="" at="" end="" of="" study="" the="">101d). Two major (i.e. >10% AR) degradation product were observed, (maximum of 52.6 and 31.6% AR at 6d) and PG (maximum of 16.7% AR at 31d in the Goose River system). In addition, CPG was observed as a major metabolite (maximum of 47.8 and 49.2% AR at 31d).</lod>
6		Other unknown peaks were detected as minor degradates throughout the study, but no individual peak represented >5% AR at two consecutive sampling intervals or >5% AR and increasing at the end of the study in each fraction of the water layer and the sediment extracts.
4.3.1	Isomerisation	The test substances were also analyzed by normal-phase HPLC to establish their isomer ratio at dosing and in sediment extracts and water phases by normal-phase HPLC. Isomerization of the test substance was not observed during the incubation period.
4.3.2	Confirmatory analysis	The identification of both and CPG-Me was based on HPLC retention times and co- elution with the corresponding reference standards. The HPLC assignment of and CPG-Me was confirmed by two-dimensional TLC analysis of representative samples (<i>cis</i> -water layer day 13 and 31, (GR and GL) Rep A) (<i>trans</i> -water layer day 13 (GR and GL) Rep B and day 31 (GL Rep A) (GR Rep B)) with reference standards.
		Using LC/MS the metabolites , CPG and PMH were confirmed.

Anne	x Point IIIA 10.1.3.2	Biodegradation in freshwater IIIA 10.1.3.2 Water/sediment degradation test	
4.4	Degradation pathway	The degradation pathway is presented in Figure 1.	
4.5	Degradation rate	The degradation rate of [<i>cis</i> - ¹⁴ C]-Imiprothrin and [<i>trans</i> - ¹⁴ C]-Imiprothrin in the Goose River and Golden Lake test systems (whole system and water layer) is summarised in Table 10.	х

Anne	x Point IIIA 10.1.3.2	Biodegradation in freshwater IIIA 10.1.3.2 Water/sediment degradation test	
5	APPLICANT'S SU	IMMARY AND CONCLUSION	-
5.1	Materials and methods	The degradation of [<i>cis</i> - ¹⁴ C]- and [<i>trans</i> - ¹⁴ C]-Imiprothrin has been investigated in two natural water/sediment systems according to the OECD 308 guideline.	
5.2	Results and discussion	Most of the applied radioactivity was detected in the water layers and steadily dissipated to the sediment layer. By the end of the study i.e. 101d, the recovered radioactivity remaining in the water layer represented an average of 11.5 and 6.9% AR for $[cis-^{14}C]$ -Imiprothrin and an average of 5.1 and 12.1% AR, for the $[trans-^{14}C]$ -Imiprothrin. The level of applied radioactivity extractable from the sediment layer were at a maximum at 6d in the test systems treated with $[cis-^{14}C]$ -Imiprothrin and comprised 43.2 and 25.0% AR for the Goose River and Golden Lake systems, respectively. The level of applied radioactivity extractable from the sediment layer were at a maximum at 16d in the test systems treated with $[cis-^{14}C]$ -Imiprothrin and Cooperative and Golden Lake systems, respectively. The level of applied radioactivity extractable from the sediment layer were at a maximum at 13d in the test systems treated with $[trans-^{14}C]$ -Imiprothrin and comprised 31.1 and 17.0% AR for the Goose River and Golden Lake systems, respectively. The level of applied radioactivity as bound residues in the test systems were at a maximum at the end of the study and comprised $ca 27\%$ AR for the Goose River system and $ca 36\%$ in the Golden Lake system, for each radiolabelled Imiprothrin form. Further analysis showed the radioactivity was associated primarily with an insoluble humin fraction. Radiolabelled carbon dioxide was produced in significant amounts by the end of the incubation phase, accounting for 39.9 to 44.5% AR from the $[trans-^{14}C]$ -Imiprothrin labelled test systems. For the total system of the Goose River and Golden Lake test systems, treated with $[cis-^{14}C]$ -Imiprothrin, the level of Imiprothrin detected declined from an average of 82.8 and 76.2% AR, respectively, at 0d to 0.7 and 0.5% AR at the end of the study. The DT ₅₀ in the whole system	x
		Lake test systems, respectively. Major degradation products observed in this study were	

Annex	c Point IIIA 10.1.3.2	Biodegradation in freshwater IIIA 10.1.3.2 Water/sediment degradation test	
5.3	Conclusion	Carbon dioxide comprosed the major terminal degradation product accounting for ca 40 to 52% AR depending on label position and test	x x
5.3.1	Reliability	The study was carried out to GLP and according to recognized guidance. As such the study is considered to be fully reliable without restriction and is assessed as Klimisch 1.	
5.3.2	Deficiencies	No relevant deficiencies were identified in the study report.	

Evaluation by Competent Authorities	
Use separate "evaluation boxes" to provide transparency as to the comments and views submitted	

Imiprothrin

February 2016

Imiprothrin

February 2016

Date	23/02/2016
Materials and Methods	The Applicant's version is considered to be acceptable noting the following:
	3.3.1 The water/ sediment systems chosen were not contrasting with respect to pH.
Results and discussion	The Applicant's version is considered to be acceptable noting the following:
	4.1 The total overall mass balance for the Goose River and Golden Lake test systems treated with [<i>cis</i> - ¹⁴ C]-Imiprothrin averaged 96.6 \pm 6.1% AR and 100.0 \pm 5.2% AR, respectively.
	The total overall mass balance for the Goose River and Golden Lake test systems treated with [<i>trans</i> - ¹⁴ C]-Imiprothrin averaged 96.3 \pm 3.9% AR and 96.9 \pm 3.8% AR, respectively.
	4.2 The level of applied radioactivity extractable from the sediment layer were at a maximum at 6d in the test systems treated with $[cis^{-14}C]$ -Imiprothrin and comprised 43.3 and 25.0% AR for the Goose River and Golden Lake systems, respectively.
	The level of applied radioactivity extractable from the sediment layer were at a maximum at 13d in the test systems treated with [<i>trans</i> - ¹⁴ C]-Imiprothrin and comprised 31.6 and 17.0% AR for the Goose River and Golden Lake systems, respectively.
	The level of applied radioactivity as bound residues in the test systems treated with [<i>trans</i> - ¹⁴ C]-Imiprothrin were at a maximum at 101d for the Goose River and Golden Lake systems, respectively and comprised 26.2 and 35.8% AR.
	¹⁴ C-Carbon dioxide was evolved from each test system, reaching a maximum after 101d incubation. In the [<i>cis</i> - ¹⁴ C]-Imiprothrin treated systems levels of 39.6 and 44.5% AR were obtained in the Goose River and Golden Lake systems, respectively, in the [<i>trans</i> - ¹⁴ C]-Imiprothrin treated systems the corresponding levels were 52.3 and 39.9% AR.
	3.7.1, 4.5, 5.2 and 5.3 As it was unclear if FOCUS guidance had been followed by the applicant with respect to the statistical analysis (chi squared and t test values) of the kinetic fits presented, the UK CA has recalculated the dissipation rate constants using CAKE version 2.
	The ordinary least squares method of minimisation (OLS) as recommended in the FOCUS guidance was used and a day 0 total recovery value was used to account for early degradation in line with FOCUS recommendations.
	Data set: Cis-imiprothrin disspiation from Goose river water (SFO) with OLS
	Observations and Fitted Model:
	<u> </u>

Page 14 of 60

Imiprothrin

February 2016

Parameter	Value	σ	Prob. > t	Lower (90%) CI	Upper (90%) CI	Lower (95%) CI	Upper (95%) CI
Parent_0	98.77	2.237	N/A	94.83	102.7	93.97	103.6
k_Parent	0.6244	0.03324	1.25E- 011	0.5659	0.6829	0.5531	0.696

 χ^2

Parameter	Error %	Degrees of Freedom
All data	7_39	6
Parent	7.39	6

Decay Times:

Compartment	DT50 (days)	DT90 (days)
Parent	1.11	3.69

On the basis of the low chi² error value and good visual fit based on traditional and residual plots the UK CA considered the SFO fit to be acceptable and no further assessment of non-SFO kinetic models was considered necessary.

Data set: Cis-imiprothrin disspiation from Golden Lake water (SFO) with OLS

Observations and Fitted Model:

Page 15 of 60

Residual (%)	•						
0 -		20	40	60	80	1	100
-10 -1	÷					Time (day	s)
Estimated Parameter	Values: Value	σ	Prob. >t	Lower (90%) CI	Upper (90%) CI	Lower (95%) CI	Upper (95%) CI
Parent_0	93.25	2.533	N/A	88.79	97.71	87.81	98.68
k_Parent	0.1815	0.01436	2.41E- 009	0.1562	0.2068	0.1507	0 212
χ ²							L;
Pai	rameter	En	or %	De	grees of eedom		51
All data	<u>Б</u>	9	.24		6		
Parent	1000	9	.24		6		
Decay Tin	nes:		-				
Com	partment	DT5) (days)	DTS	00 (days)		
Parent		3	.82	1 2	12.7		
On the basi traditional and no furt Data set: OLS	is of the lov and residua her assessr Trans-imig	w chi ² error al plots the 1 nent of non- prothrin di	value and UK CA co -SFO kine sspiation	l acceptable onsidered tl tic models from Gold	e visual fit he SFO fit was consid len Lake v	based on to be accep dered nece vater (SFC	otable ssary,)) with

Page 17 of 60

On the basis of the low chi² error value and good visual fit based on traditional and residual plots the UK CA considered the SFO fit to be acceptable and no further assessment of non-SFO kinetic models was considered necessary.

Compound	System	DT ₅₀	DT90	χ^2	Prob. > t
Cis-imiprothrin	Goose River	2.14	7.11	10.7	1.33E-08
Trans- imiprothrin	Goose River	1.11	3.69	7.39	1.21E-11
Cis-imiprothrin	Golden Lake	3.82	12.7	9.24	2.41E-09
Trans- imiprothrin	Golden Lake	1.95	6.49	1.10	4.26E-10

A summary of Imiprothrin Water Dissipation at 20 °C

Imiprothrin degradation kinetics have also been revised by the UK CA, following FOCUS guidelines using CAKE version 3 and have been calculated for degradation products where possible.

Where possible sequential total system fits were attempted for parent and first metabolite. Where this was not possible to achive acceptable fits, a simpler conservative top down approach from the time point of peak residues was used. The ordinary least squares method of minimisation (OLS) as recommeded in the FOCUS guidance was used and a day 0 total recovery value was used to account for sediment residues, or metabolites.

Summary of Kinetic fit used

Soil	Isomer	Compound	Fitting Comment	
		Imiprothrin	SFO with	
	Cia		SFO with imiprothrin	
	CIS		SFO peak onwards	
Coose Diver			SFO peak onwards	
Goose River		Imiprothrin	SFO fitted alone	
	Trong		SFO peak onwards	
	Trans		SFO peak onwards	
			SFO peak onwards	
		Imiprothrin	SFO fitted alone	
Golden	Cia		SFO peak onwards	
	CIS		Unable to fit data	
			Not major metabolite	
Lake		Imiprothrin	SFO fitted alone	
	Trees		Unable to fit data	
	1 rans		SFO peak onwards	
			Not major metabolite	

Page 20 of 60

Imiprothrin

Parent_0 98.37 k_Parent 0.48 χ² Parameter All data Parent Decay Times: Compartment Parent Parent On the basis of the loc residual plots the UK assessment of non-SI Data set: Trans-imipols Observations and F (%) 100 100 100 00 80	1.989 0.02405	N/A 2.07E -008 Error % 4.17 4.17 4.17 T50 (days) 1.44 value and ered the S nodels was gradation :	94.67 0.4353 1 d good vi FO fit to s conside	102.1 0.5247 Degrees of Fr 3 3 DT90 (da 4.8 sual fit bas be accepta red necessa	ys) ed on trad ble and no ary.
k_Parent 0.48 χ² Parameter All data Parent Decay Times: Compartment Parent Parent On the basis of the loc residual plots the UK assessment of non-SI Data set: Trans-imip OLS Observations and F (a) 120 - 1 100 + 100	0.02405	2.07E -008 Error % 4.17 4.17 4.17 T50 (days) 1.44 value and ered the S nodels was	0.4353	0.5247 Degrees of Fr 3 3 DT90 (da 4.8 sual fit bas be accepta red necessa	0.4245 reedom ys) ed on trad ble and no ary. water (SF
X ² All data Parent Decay Times: Compartment Parent On the basis of the lo residual plots the UK assessment of non-SI Data set: Trans-imip OLS Observations and F (***********************************	D D D D D D D D D D D D D D D D D D D	Error % 4.17 4.17 T50 (days) 1.44 value and ered the S nodels was	d good vi FO fit to s conside	Degrees of Fr 3 3 DT90 (da 4.8 sual fit bas be accepta red necessa	reedom ys) ed on trad ble and no ary. water (SF
Parameter All data Parent Decay Times: Compartment Parent On the basis of the loc residual plots the UK assessment of non-SI Data set: <i>Trans</i> -imip OLS Observations and F	D' Dy chi ² error C CA conside FO kinetic n prothrin deg	Error % 4.17 4.17 T50 (days) 1.44 value and ered the S nodels was gradation	d good vi FO fit to s conside	Degrees of Fr 3 3 DT90 (da 4.8 sual fit bas be accepta red necessa	reedom ys) ed on trad ble and no ary. water (SF
All data Parent Decay Times: Compartment Parent On the basis of the lo residual plots the UK assessment of non-SI Data set: Trans-imip OLS Observations and F	D D D D D D D D D D D D D D D D D D D	4.17 4.17 T50 (days) 1.44 value and ered the S nodels was	d good vi FO fit to s conside	3 3 DT90 (da 4.8 sual fit bas be accepta red necessa	ys) ed on trad ble and no ary. water (SF
Parent Decay Times: Compartment Parent On the basis of the lor residual plots the UK assessment of non-SI Data set: Trans-imip OLS Observations and F	D D D D D D D D D D D D D D D D D D D	4.17 T50 (days) 1.44 value and ered the S nodels was gradation :	d good vi FO fit to s conside	3 DT90 (da 4.8 sual fit bas be accepta red necessa	ys) ed on trad ble and no ary. water (SF
Decay Times: Compartment Parent On the basis of the loc residual plots the UK assessment of non-SI Data set: <i>Trans</i> -imip OLS Observations and F	D ow chi ² error C CA conside FO kinetic m orothrin deg	1.44 value and ered the S nodels wa gradation	d good vi FO fit to s conside	DT90 (da 4.8 sual fit bas be accepta red necessa	ys) ed on trad ble and no ary. water (SF
Compartment Parent On the basis of the lo residual plots the UK assessment of non-SI Data set: <i>Trans</i> -imip OLS Observations and F	D ow chi ² error C CA conside FO kinetic n orothrin deg	1.44 value and ered the S nodels wa gradation	d good vi FO fit to s conside	DT90 (da 4.8 sual fit bas be accepta red necessa	ys) ed on trad ble and no ary. water (SF
Parent On the basis of the lo residual plots the UK assessment of non-SI Data set: <i>Trans</i> -imip OLS Observations and F	ow chi ² error CA conside FO kinetic n orothrin deg	1.44 value and ered the S nodels wa gradation	d good vi FO fit to s conside	4.8 sual fit bas be accepta red necessa	ed on trad ble and no ary. water (SF
On the basis of the lo residual plots the UK assessment of non-SI Data set: <i>Trans</i> -imip OLS Observations and F	ow chi ² error CA conside FO kinetic n orothrin deg	value and ered the S nodels wa gradation	d good vi FO fit to s conside from G	sual fit bas be accepta red necessa	ed on trad ble and no ary. water (SF
	10	15	20	25	30 -

Page 21 of 60

R	esiduals:							
	6							
	-2-	5	10 1	15	20 2	5 30	<u>,</u>	
		•				Time (days)	
Е	stimated Val Parameter	ues: Value	σ	Prob. > t	Lower (90%) CI	Upper (90%) CI	Lower (95%) CI	Upper (95%) CI
	Parent_0	100.2	1.648	N/A	97.25	103.2	96.56	103.9
	k_Parent	0.4357	0.01814	1.78E -010	0.4029	0.4686	0.3953	0.476
X					1.1.1			-
	Param	eter	Err	or %	Deg	rees of Free	dom	
	All data		2	.38		4		
	Parent		2	.38		4		
D	ecay Times:				_			
	Compart	tment	DT50	(days)	1	DT90 (days)		
	Parent	-	1	.59		5.28		
O re as	n the basis of sidual plots the sessment of r ata set: <i>Trans</i>	the low c he UK CA non-SFO k s-imiprotl	hi ² error va considerec tinetic mod nrin degra	lue and g d the SFC els was c dation fr	ood visua) fit to be onsidered	l fit based acceptable necessary en lake wa	on tradition and no fi 7. ater (SFO	onal and uther) with
0	bservations :	and Fittee	l Model:					

kinetic models was considered necessary.

	Value	σ	Prob. > t	Lower (90%) CI	Upper (90%) CI	Lower (95%) CI	Uppe (95% CI
Parent_0	42.76	2.465	N/A	37.5	48.01	35.91	49.6
k_Parent	0.01588	0.002406	0.00136	0.01076	0.02101	0.00920	0.02
χ^2	· · · · · · · · · · · · · · · · · · ·						
P	arameter		Error %	Deg	rees of Free	dom	
All data	ι.		2.24		1		
Parent			2.24		1		
Decay Ti	nes:						
Co	mpartment	D	T50 (days)		DT90 (days)		
Parent	_		43.6		145	- · · ·	
-04 -00 -00 -00 -00 -00 -00 -00 -00 -00		/					
					-		
0		20	40		60	-	

	Compartmen	nt	DT50 (days)	DT	90 (days)	
	Parent		42.7		142	
1 2 2 2 2 2 2	n the basis of the sidual plots the U sessment of non- nta set: PG in G a nsidered a major	e low chi ² er JK CA cons -SFO kinetio olden lake s r metabolite	ror value and sidered the SF c models was system was no.	good visual fi O fit to be acc considered ne ot present at h	it based o ceptable a ecessary. igh enou	n traditional and no furthe gh levels to t
		Water/ S	ediment Deg	radation at 2	0°C	_
	Compound	System	Measured DT50 (days) at 20°C	Measured DT ₉₀ (days) at 20°C	χ²	Prob. > t
	<i>Cis</i> - imiprothrin	Goose River	5.40	17.9	9.31	1.17E-15
	<i>Cis-</i> imiprothrin	Golden Lake	1.44	4.80	4.17	2.07E-08
	<i>Trans</i> - imiprothrin	Goose River	1.59	5.28	2.38	1.78E-10
	<i>Trans</i> - imiprothrin	Golden Lake	1.37	4.55	7.13	3.29E-04
		Goose River	7.94	26.4	18.5	6.96E-04
		Golden Lake	3.99	13.3	1.55	1.95E-04
		Goose River	6.67	22.2	7.77	5.54E-06
		Goose River	43.6	145	2.24	1.36E-03
		Goose River	23.3	77.4	1.45	4.35E-04
		Golden Lake	43.4	144	12.8	0.007001
		Goose River	51.5	171	1.47	0.01324
		Goose	42.7	142	2.39	6.52E-04

Sumitomo Chemical Company, Eta m	Sumitomo	Chemical	Company,	Ltd	Im
----------------------------------	----------	----------	----------	-----	----

Conclusion	The applicant's ve	The applicant's version is considered to be acceptable noting the following:					
	 4.1 and 5.3 For [cis-¹⁴C]-Imiprothrin the DT₅₀ in the whole system was determined to be 5.4 and 1.4 days for the Goose River and Golden Lake test systems, respectively. For [trans-¹⁴C]-Imiprothrin the DT₅₀ in the whole system was determined to be 1.6 and 1.4 days, respectively. Major degradates of either Cis or Trans- Imiprothrin and their respective compartments 						
		Degradate	#Max %	formed in;			
			Water	Sediment			
			38.8	13.9			
			49.2	14.2			
			-	16.7			
			10	*00			
	*worst case default as not measured						
	It is noted that due to the position of radiolabelling the levels of and fate of degradation products relating to the chrysanthemic acid moiety could not be identified in this study.						
Reliability	Accepted as being	g 1.					
Acceptability	The Applicant's v	ersion is consider	ed to be accep	table.			

Remarks	Although imi (reported A7. Golden lake biodegradatio observed, 39. that imiproth environment. Table 9	prothrin $(1.1.2.1)$ is a standard set of the set of t	has bee rapid de liment s signific % AR e subje	en shown egradatio systems ant amo (CO ₂) an ct to sig	n to be s on has b at 20 °C unts of nd 26.2- nificant	stable ir been ob: C. Also CO ₂ an · 35.8 % levels	a read served in cont d bound oAR (bo of mine	y biode in both rast to t d residu ound). 7 eralisatio	gradation Goose the the read les were This ind this ind	on study river an y licates e aquat
	The correct ta	able for C	GR tran	s-imipro	othrin se	diment	extract	is prov	vided be	low
	Goose River	(GR) trans	(Sedim	ent Extra	ct)			F ·		
					INC	UBATION	TIME (D	avs)		-2
	(% AR)	Sample	0	11	2	6	13	31	60	101
	trans-	Rep A	8.6	17.5	11.8	2.1	1.4	0.0	0.0	0.0
	Imiprothrin	Rep B	10.2	15.9	9.0	2.8	1.4	0.0	0.0	0.0
	1 . I	Average	9.4	16.7	10.4	2.5	1.4	0.0	0.0	0.0
	cis-imiprotnrin	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	c/t-PRA	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	r	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	PGH	Rep A	0.0	0.0	0.0	14.2	3.7	0.0	0.9	0.0
		Rep B	0.0	0.0	0.0	13.5	6.4	0.0	1.7	0.0
		Average	0.0	0.0	0.0	13.9	5.1	0.0	1.3	0.0
	CPG-Me	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	and the second sec	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	DC.	Average Don A	0.0	0.0	2.0	0.0	12.2	16.7	12.2	6.0
	PG	Rep R	0.0	0.0	21	37	94	16.7	95	49
		Average	0.0	0.0	3.0	4.7	10.8	16.7	10.9	5.1
	CPG	Rep A	0.0	0.0	0.0	8.1	13.4	8.8	3.3	2.1
	(trans UK1)	Rep B	0.0	0.0	0.0	7.6	15.0	9.7	3.1	1.1
		Average	0.0	0.0	0.0	7.9	14.2	9.3	3.2	1.6
	Others	Rep A	0.0	0.0	5.5	0.0	0.0	0.0	1.3	0.0
		Rep B	0.0	2.3	8.4	0.0	0.0	0.0	1.8	0.0
	· · · · · · · · · · · · · · · · · · ·	Average	0.0	1.2	7.0	0.0	0.0	0.0	1.6	0.0

Date	Give date of comments submitted
Materials and Methods	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state
Reliability	Discuss if deviating from view of rapporteur member state
Findings	Discuss if deviating from view of rapporteur member state
Conclusion	Discuss if deviating from view of rapporteur member state
Remarks	

Characteristics	Goose River	Golden Lake
	Water layer	
Sample no.		
Sampling location	Grand Forks County, ND	Steele County, ND
Date of collection	November 5,2013	November 5,2013
Storage conditions	Typically <4°C	Typically <4°C
Received at PTRL	November 12,2013	November 12,2013
Duration of storage ¹	7 days	7 days
Start Incubation Period ²	November 19,2013	November 19,2013
Pre-incubation period ³	31 and 49 days	31 and 49 days
Samples dosed	December 20, 2013	December 20, 2013
	January 7, 2014	January 7, 2014
pH	8.5	8.7
Calcium (ppm)	164	110
Magnesium (ppm)	94	97
Sodium (ppm)	166	97
Hardness (mg equivalent CaCO ₃ /L)	802	679
Conductivity (mmhos/cm)	1.76	1.40
Sodium Adsorption Ratio (SAR)	2.56	1.63
Total Dissolved Solids (ppm)	1610	1274
Turbidity (NTU)	5.89	10.4
Total Organic Content of Water		
Layer (ppm):		
At collection	12.81	14.59
Start of study	16.39	19.00
End of study	10.64	12.00

Table 1: Characterisation of the water/sediment system.

Characteristics	Goose	River	Golden Lake		
	Sediment	layer			
Sampling location	Grand Forks	County, ND	Steele C	ounty, ND	
Date of collection	Novembe	r 5, 2013	Novemb	er 5, 2013	
Sampling depth (cm)	0-	5	()-5	
Received at PTRL	November	12, 2013	Novembe	er 12, 2013	
Storage conditions	Typicall	y < 4°C	Typica	lly < 4°C	
Duration of storage1	7 da	ays	7 (days	
Start incubation period2	November	r 19,2013	Novembe	er 19, 2013	
Pre incubation period3	31 and 4	19 days	31 and	49 days	
Samples dosed	December	20, 2013	Decembe	er 20, 2013	
-	January	7, 2014	Januar	y 7, 2014	
Sand (%)	3	1		85	
Silt (%)	38	8	12		
Clay (%)	3	1	3		
Texture (USDA)	Clay Loam		Loamy Sand		
pH 1:1 soil:water ratio	7.8		8.1		
Organic matter (%)	5.9		2.1		
Organic carbon (%)4	3.4	43	1.22		
Bulk density (gm/cc)	0.88		0	.99	
CEC (meq/100 g soil)	22.3		9	9.5	
Moisture at 0.33 bar	53	.8	1	8.9	
Wet/dry ratio	2.0)4	1	.52	
Base Saturation Data	%	ppm	%	ppm	
Calcium	59.5	2650	53.7	1021	
Magnesium	25.8	688	31.6	361	
Sodium	3.9	200	4.0	88	
Potassium	2.9	253	3.1	115	
Hydrogen	7.9	18	7.6	7	
Microbial Biomass of Sediment (µg					
C/ g soil):					
At collection	82	0	4	55	
Start of study	33	8	2	257	
End of study	18	0	2	.39	

Table 1: Characterisation of the water/sediment system.

¹ The duration of storage is the time from when the water or sediment was received at PTRL to the start of the

incubation period. ² The start of the incubation period is the date when the traps and samples are hooked up to pumps and stored in the Controlled Temperature Chamber at 20°C.

³ The pre-incubation period is the time from start of incubation to dosing. ⁴ Organic carbon = organic matter \div 1.72.

Imiprothrin

Date	Sample no.	DATA	Extraction	HPLC	Combustion				
	Goose River								
1/7/2014		0	1/7/2014	1/7/2014	1/13/2014				
1/8/2014		1	1/8/2014	1/8/2014	1/14/2014				
1/9/2014		2	1/9/2014	1/9/2014	1/15/2014				
1/13/2014		6	1/13/2014	1/13/2014	1/22/2014				
1/2/2014		13	1/2/2014	1/2/2014	1/8/2014(trans) 1/9/2014 (cis)				
1/20/2014		31	1/20/2014	1/20/2014	1/23/2014				
2/18/2014		60	2/18/2014	2/18/2014	2/24/2014				
3/31/2014		101	3/31/2014	3/31/2014	4/7/2014				
			Golden Lake						
1/7/2014		0	1/7/2014	1/7/2014	1/13/2014				
1/8/2014		1	1/8/2014	1/8/2014	1/14/2014				
1/9/2014		2	1/9/2014	1/9/2014	1/15/2014				
1/13/2014		6	1/13/2014	1/13/2014	1/22/2014				
1/2/2014		13	1/2/2014	1/2/2014	1/8/2014(trans) 1/9/2014 (cis)				
1/20/2014		31	1/20/2014	1/20/2014	1/23/2014				
2/18/2014		60	2/18/2014	2/18/2014	2/24/2014				
3/31/2014		101	3/31/2014	3/31/2014	4/7/2014				

Table 2: Schedule of events.

^A Days after treatment. Note: test system was treated over 2 dates. 0d to 6d samples were treated on 7 Jan 2014, 13d to 101d samples were treated on 20 Dec 2013.

Sumitomo Chemical Company, Ltd Imiprothrin

Table 3:Dissolved oxygen, pH and redox potential measurements of the aerobic aquatic testsystem.

Goose River - Prior to Treatment

000se River - 1 110	Measurements	u taken in middl	Measurements sediment	s taken in	
Sample #	DO (ppm)	ORP (mV)	рН	ORP (mV)	pН
31	8.68	105	7.80	-71	6.93

		Measurement water layer	s taken in mi	iddle of	Measurement sediment	s taken in
Sample ID	Sample #	DO (ppm)	ORP (mV)	рН	ORP (mV)	рН
cis- Time 0 Rep A		5.39	102	7.99	-71	6.64
cis- Time 0 Rep B		5.43	79	7.70	-74	6.67
cis-T1d Rep A		7.78	83	6.16	-103	6.18
cis-T1d Rep B		7.61	61	6.74	-38	6.51
cis-T2d Rep A		6.85	61	6.22	-112	6.11
cis-T2d Rep B		6.91	39	6.56	-97	6.31
cis-T6d Rep A		3.87	11	7.56	-156	6.87
cis-T6d Rep B		4.36	19	7.06	-143	6.61
cis-T13d Rep A		6.05	22	7.73	-92	7.40
cis-T13d Rep B		5.37	26	7.63	-18	7.34
cis-T31d Rep A		7.48	169	7.27	83	7.15
cis-T31d Rep B		7.06	139	7.45	65	7.13
cis-T60d Rep A		6.97	132	8.92	-14	7.79
cis-T60d Rep B		6.27	123	7.83	-58	7.54
cis-T101d Rep A		7.20	228	8.05	189	7.01
cis-T101d Rep B		6.91	240	7.17	135	7.01
Average =		6.34	96	7.38	-32	6.89

Table 3 (cont.): Dissolved oxygen, pH and redox potential measurements of the aerobic aquatic test system.

Goose River - Prior to Treatment

Goose River - Frid	i io Treaimer	11		I	
	Measurements taken in middle of water layer			Measurement sediment	s taken in
Sample #	DO (ppm)	ORP (mV)	рН	ORP (mV)	рН
3	8.47	115	7.71	-84	7.01

					I		
		Measurements taken in middle of water layer			Measurements taken in sediment		
Sample ID	Sample #	DO (ppm)	ORP (mV)	рН	ORP (mV)	рН	
trans- Time 0 Rep A		4.71	71	8.30	-78	6.52	
trans- Time 0 Rep B		5.31	54	7.79	-67	6.63	
trans-T1d Rep A		7.59	38	6.05	-114	6.09	
trans-T1d Rep B		10.01	147	6.98	-151	6.85	
trans-T2d Rep A		9.11	36	6.59	-134	6.61	
trans-T2d Rep B		9.44	43	7.46	-129	7.10	
trans-T6d Rep A		8.94	160	6.61	-194	6.57	
trans-T6d Rep B		10.45	121	7.19	-217	6.79	
trans-T13d Rep A		6.42	44	8.06	86	6.86	
trans-T13d Rep B		6.21	70	7.51	-118	6.98	
trans-T31d Rep A		10.11	198	5.96	-85	5.85	
trans-T31d Rep B		10.28	199	6.07	-49	6.05	
trans-T60d Rep A		9.17	133	6.25	-67	6.51	
trans-T60d Rep B		9.65	105	6.84	-76	6.53	
trans-T101d Rep A		9.03	161	6.47	-48	6.81	
trans-T101d Rep B		9.03	162	6.58	-57	6.93	
Average =		8.47	109	6.92	-94	6.61	

Table 3 (cont.): Dissolved oxygen, pH and redox potential measurements of the aerobic aquatic test system.

Golden Lake - Prior to Treatment

Golden Lake - Frid	or to Treatmen	11		I	
	Measurements layer	taken in middle	e of water	Measurement: sediment	s taken in
Sample #	DO (ppm)	ORP (mV)	pН	ORP (mV)	рН
71	9.13	114	7.69	-46	7.35

0 2							
		Measurements taken in middle of water layer			Measurements taken in sediment		
Sample ID	Sample #	DO (ppm)	ORP (mV)	pН	ORP (mV)	pН	
cis- Time 0 Rep A		6.09	85	8.25	-72	7.69	
cis- Time 0 Rep B		6.26	82	8.24	-45	6.90	
cis-T1d Rep A		8.45	57	7.15	-81	7.20	
cis-T1d Rep B		8.15	55	7.42	-33	7.23	
cis-T2d Rep A		7.33	37	7.17	-119	7.03	
cis-T2d Rep B		7.24	42	7.58	-106	7.17	
cis-T6d Rep A		4.33	-25	7.07	-185	7.18	
cis-T6d Rep B		3.95	-14	7.58	-183	7.28	
cis-T13d Rep A		7.08	18	7.86	-47	7.73	
cis-T13d Rep B		6.88	14	8.11	-107	7.98	
cis-T31d Rep A		6.78	160	7.29	136	7.38	
cis-T31d Rep B		7.62	180	7.64	187	7.27	
cis-T60d Rep A		7.32	84	7.71	104	8.14	
cis-T60d Rep B		7.24	126	7.95	133	8.04	
cis-T101d Rep A		8.03	208	7.07	241	7.27	
cis-T101d Rep B		8.06	220	7.49	240	7.49	
Average =		6.93	83	7.60	4	7.44	

Table 3 (cont.): Dissolved oxygen, pH and redox potential measurements of the aerobic aquatic test system.

Golden Lake - Prior to Treatment

	Measurements layer	taken in middle	e of water	Measurements taken in sediment				
Sample #	DO (ppm)	ORP (mV)	pН	ORP (mV)	pН			
61	9.15	105	7.45	-64	7.56			

0 1						
		Measuremen water layer	ıts taken in 1	niddle of	Measuremen sediment	ts taken in
Sample ID	Sample #	DO (ppm)	ORP (mV)	рН	ORP (mV)	рН
trans- Time 0 Rep A		5.80	67	7.69	-34	7.28
trans- Time 0 Rep B		4.89	82	7.55	-30	7.20
trans-T1d Rep A		10.04	25	7.09	-41	7.18
trans-T1d Rep B		9.95	52	7.46	-57	7.46
trans-T2d Rep A		9.75	47	7.65	-61	7.60
trans-T2d Rep B		9.71	59	7.85	-90	7.21
trans-T6d Rep A		11.23	-58	7.48	-224	7.45
trans-T6d Rep B		11.89	-73	7.49	-238	7.36
trans-T13d Rep A		7.45	98	7.43	-112	7.26
trans-T13d Rep B		6.39	8	7.54	-114	7.48
trans-T31d Rep A		9.87	201	6.11	-21	6.27
trans-T31d Rep B		10.31	203	6.34	-60	6.48
trans-T60d Rep A		9.59	125	7.07	-103	7.08
trans-T60d Rep B		9.52	143	7.11	-52	7.13
trans-T101d Rep A		8.63	147	7.57	-112	7.21
trans-T101d Rep B		8.43	128	7.39	-72	7.03
Average =		8.97	78	7.30	-89	7.17

Sample	Water	Sedin	ment		Volatile Trap	s	Total
-	layer	Sediment extract	Bound Residue	EG	Foam Plug	NaOH	Recovery
- T0d Rep A	94.5	4.4	0.0	NA	NA	NA	98.9
Cis- T0d Rep B	83.9	3.8	0.0	NA	NA	NA	87.7
Average	89.2	4.1	0.0	NA	NA	NA	93.3
Cis-T1d Rep A	71.6	25.1	1.6	0.0	0.0	0.0	98.3
Cis-T1d Rep B	69.0	26.8	2.2	0.0	0.0	0.0	98.0
Average	70.3	26.0	1.9	0.0	0.0	0.0	98.2
Cis-T2d Rep A	62.2	29.5	3.0	0.0	0.0	0.1	94.8
Cis-T2d Rep B	64.6	34.5	3.3	0.0	0.0	0.1	102.5
Average	63.4	32.3	3.2	0.0	0.0	0.1	98.7
Cis-T6d Rep A	52.7	43.8	6.6	0.0	0.0	0.3	103.4
Cis-T6d Rep B	53.6	42.6	7.6	0.0	0.0	0.3	104.1
Average	53.2	43.2	7.1	0.0	0.0	0.3	103.8
Cis-T13d Rep A	48.3	37.1	10.3	0.0	0.0	2.2	97.9
Cis-T13d Rep B	47.3	37.0	11.9	0.0	0.0	1.1	97.3
Average	47.8	37.1	11.1	0.0	0.0	1.7	97.6
Cis-T31d Rep A	35.2	28.8	23.9	0.0	0.0	11.7	99.6
Cis-T31d Rep B	33.9	27.6	20.9	0.0	0.0	12.6	95.0
Average	34.6	28.2	22.4	0.0	0.0	12.2	97.3
Cis-T60d Rep A	26.9	20.0	24.6	0.1	0.0	22.8	94.4
Cis-T60d Rep B	14.0	14.6	31.9	0.1	0.0	36.1	96.7
Average	20.5	17.3	28.3	0.1	0.0	29.5	95.6
Cis-T101d Rep A	17.4	6.7	26.9	0.0	0.0	32.5	83.5
Cis-T101d Rep B	5.6	11.9	26.2	0.0	0.0	46.7	90.4
Average	11.5	9.3	26.6	0.0	0.0	39.6	87.0
						Average =	96.4
						Std. Dev. =	5.5

 Table 4:
 Mass balance during the aerobic aquatic metabolism of [_____-¹⁴C]-Imiprothrin expressed as percent of applied radiocarbon – Goose river.

Sample	Water	Sedi	ment		Volatile Traps			
-	layer	Sediment extract	Bound Residue	EG	Foam Plug	NaOH	Recovery	
Trans- T0d Rep A	89.6	8.6	0.0	NA	NA	NA	98.2	
Trans- T0d Rep B	91.2	10.2	0.0	NA	NA	NA	101.4	
Average	90.4	9.4	0.0	NA	NA	NA	98.8	
Trans-T1d Rep A	77.3	17.5	2.5	0.0	0.0	0.1	97.4	
Trans-T1d Rep B	77.3	18.2	1.5	0.0	0.0	0.0	97.0	
Average	77.3	17.9	2.0	0.0	0.0	0.1	97.2	
Trans-T2d Rep A	75.0	21.3	2.0	0.0	0.0	0.1	98.4	
Trans-T2d Rep B	74.2	19.5	2.2	0.0	0.0	0.0	95.9	
Average	74.6	20.4	2.1	0.0	0.0	0.1	97.2	
Trans-T6d Rep A	64.9	30.0	6.1	0.0	0.0	0.5	101.5	
Trans-T6d Rep B	65.8	27.6	6.2	0.0	0.0	0.5	100.1	
Average	65.4	28.8	6.2	0.0	0.0	0.5	100.8	
Trans-T13d Rep A	52.0	30.8	12.3	0.0	0.0	2.1	97.2	
Trans-T13d Rep B	53.4	31.6	9.6	0.0	0.0	1.9	96.5	
Average	52.7	31.1	11.0	0.0	0.0	2.0	96.9	
Trans-T31d Rep A	38.4	25.5	19.7	0.0	0.0	12.8	96.4	
Trans-T31d Rep B	41.8	26.4	20.2	0.0	0.0	9.5	97.9	
Average	40.1	26.0	20.0	0.0	0.0	11.2	97.2	
Trans-T60d Rep A	24.8	17.8	25.5	0.0	0.0	22.5	90.6	
Trans-T60d Rep B	20.5	16.1	26.5	0.0	0.0	27.4	90.5	
Average	22.7	17.0	26.0	0.0	0.0	25.0	90.6	
Trans-T101d Rep A	6.7	7.4	25.1	0.0	0.0	53.1	92.3	
Trans-T101d Rep B	3.5	6.0	27.2	0.0	0.0	51.5	88.2	
Average	5.1	6.7	26.2	0.0	0.0	52.3	90.3	

Table 5:Mass balance during the aerobic aquatic metabolism of [trans-14C]-Imiprothrinexpressed as percent of applied radiocarbon – Goose river.

Average =

Std. Dev. =

96.2

3.9

Sample	Water	Sedi	ment		Volatile Trap	s	Total
-	layer	Sediment extract	Bound Residue	EG	Foam Plug	NaOH	Recovery
Cis- T0d Rep A	96.9	2.3	0.0	NA	NA	NA	99.2
Cis- T0d Rep B	92.8	3.1	0.0	NA	NA	NA	95.9
Average	94.9	2.7	0.0	NA	NA	NA	97.6
Cis-T1d Rep A	85.9	15.0	1.2	0.4	0.0	0.0	102.5
Cis-T1d Rep B	90.0	10.2	0.8	0.0	0.0	0.0	101.0
Average	88.0	12.6	1.0	0.2	0.0	0.0	101.8
Cis-T2d Rep A	79.9	14.9	1.4	0.0	0.0	0.0	96.2
Cis-T2d Rep B	83.5	17.6	1.6	0.0	0.0	0.0	102.7
Average	81.7	16.3	1.5	0.0	0.0	0.0	99.5
Cis-T6d Rep A	76.0	23.7	5.5	0.0	0.0	0.1	105.3
Cis-T6d Rep B	71.8	26.2	5.0	0.0	0.0	0.1	103.1
Average	73.9	25.0	5.3	0.0	0.0	0.1	104.2
Cis-T13d Rep A	61.7	24.5	10.1	0.0	0.0	0.7	97.0
Cis-T13d Rep B	62.1	23.9	11.1	0.0	0.0	0.6	97.7
Average	61.9	24.2	10.6	0.0	0.0	0.7	97.4
Cis-T31d Rep A	56.4	18.0	28.6	0.0	0.0	5.6	108.6
Cis-T31d Rep B	48.6	15.3	29.8	0.0	0.0	9.3	103.0
Average	52.5	16.7	29.2	0.0	0.0	7.5	105.8
Cis-T60d Rep A	36.7	9.8	31.7	0.1	0.0	16.5	94.8
Cis-T60d Rep B	26.8	7.9	32.6	0.1	0.0	23.4	90.8
Average	31.8	8.9	32.2	0.1	0.0	20.0	92.8
Cis-T101d Rep A	6.7	3.2	36.8	0.1	0.0	44.1	90.9
Cis-T101d Rep B	7.0	3.5	34.8	0.0	0.0	44.9	90.2
Average	6.9	3.4	35.8	0.1	0.0	44.5	90.6
						Average =	98.7
						Std. Dev. =	5.4

 Table 6:
 Mass balance during the aerobic aquatic metabolism of [*cis*-¹⁴C]-Imiprothrin expressed as percent of applied radiocarbon – Golden Lake.

Sample	Water	Sedi	ment		Volatile Trap	s	Total
-	layer	Sediment extract	Bound Residue	EG	Foam Plug	NaOH	Recovery
Trans- T0d Rep A	82.3	8.2	0.0	NA	NA	NA	90.5
Trans- T0d Rep B	88.7	6.4	0.0	NA	NA	NA	95.1
Average	85.5	7.3	0.0	NA	NA	NA	92.8
Trans-T1d Rep A	91.7	7.5	1.0	0.0	0.0	0.0	100.2
Trans-T1d Rep B	85.9	9.0	2.0	0.0	0.0	0.0	96.9
Average	88.8	8.3	1.5	0.0	0.0	0.0	98.6
Trans-T2d Rep A	87.1	9.4	1.2	0.0	0.0	0.0	97.7
Trans-T2d Rep B	80.3	12.5	3.1	0.0	0.0	0.0	95.9
Average	83.7	11.0	2.2	0.0	0.0	0.0	96.8
Trans-T6d Rep A	78.7	14.8	5.5	0.0	0.0	0.1	99.1
Trans-T6d Rep B	76.3	18.0	6.7	0.0	0.0	0.2	101.2
Average	77.5	16.4	6.1	0.0	0.0	0.2	100.2
Trans-T13d Rep A	67.5	17.9	10.9	0.0	0.0	0.8	97.1
Trans-T13d Rep B	70.7	16.0	10.8	0.0	0.0	0.5	98.0
Average	69.1	17.0	10.9	0.0	0.0	0.7	97.6
Trans-T31d Rep A	52.9	12.3	26.3	0.0	0.0	8.4	99.9
Trans-T31d Rep B	47.7	11.5	30.2	0.0	0.0	11.4	100.8
Average	50.3	11.9	28.3	0.0	0.0	9.9	100.4
Trans-T60d Rep A	46.6	11.1	29.4	0.0	0.0	7.4	94.5
Trans-T60d Rep B	37.2	7.7	39.0	0.0	0.0	18.1	102.0
Average	41.9	9.4	34.2	0.0	0.0	12.8	98.3
Trans-T101d Rep A	16.8	3.5	31.5	0.0	0.0	37.8	89.6
Trans-T101d Rep B	7.4	2.1	39.8	0.0	0.0	42.0	91.3
Average	12.1	2.8	35.7	0.0	0.0	39.9	90.5
						Average =	96.9
						Std. Dev. =	3.8

 Table 7:
 Mass balance during the aerobic aquatic metabolism of [trans-¹⁴C]-Imiprothrin expressed as percent of applied radiocarbon – Golden Lake.

Imiprothrin

Sample id	% dose									
-	Fulvic Acid	Humic Acid	Humin							
-cis T60d GR Rep B	1.2%	0.2%	0.6%							
-cis T101d GL Rep A	0.7%	0.1%	1.9%							
-trans T101d GR Rep B	0.4%	0.1%	1.2%							
-trans T101d GL Rep B	1.0%	0.2%	1.8%							

Table 8: Results of Humic Acids/Fulvic Acids Partition of Post-Extracted Sediment residues.

Sumitomo Chemical Company, Ltd Imiprothrin

	Sample			INC	UBATION	I TIME (D	ays)		
(% AR)		0	1	2	6	13	31	60	101
cis-Imiprothrin	Rep A	86.3	86.2	70.9	48.2	11.4	3.6	1.6	0.8
	Rep B	79.3	82.2	79.3	49.7	10.8	3.2	2.3	0.5
	Average	82.8	84.2	75.1	49.0	11.1	3.4	2.0	0.7
trans-	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Imiprothrin	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
c/t-PRA	Rep A	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Rep B	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Average	2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PGH	Rep A	0.0	3.6	10.1	13.8	18.1	3.0	0.0	0.0
	Rep B	1.2	6.5	6.9	14.3	22.3	5.3	0.0	0.0
	Average	0.6	5.1	8.5	14.1	20.2	4.2	0.0	0.0
CPG-Me	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PG	Rep A	0.0	0.8	1.2	3.6	5.0	12.6	11.4	3.4
	Rep B	0.0	0.0	1.2	3.7	6.0	13.4	6.7	6.5
	Average	0.0	0.4	1.2	3.7	5.5	13.0	9.1	5.0
CPG	Rep A	0.0	3.0	10.8	21.9	32.4	42.3	27.5	19.5
(cis UK1)	Rep B	0.0	6.2	13.3	28.0	31.9	43.9	24.6	10.1
	Average	0.0	4.6	12.1	25.0	32.2	43.1	26.1	14.8
Others	Rep A	11.9	3.5	2.1	11.6	18.1	2.7	3.5	0.5
	Rep B	2.7	2.6	0.0	3.7	16.3	2.6	2.1	0.3
	Average	7.3	3.1	1.1	7.7	17.2	2.7	2.8	0.4
Bound	Rep A	0.0	1.6	3.0	6.6	10.3	23.9	24.6	26.9
Residues	Rep B	0.0	2.2	3.3	7.6	11.9	20.9	31.9	26.2
	Average	0.0	1.9	3.2	7.1	11.1	22.4	28.3	26.6
EG	Rep A	NA	0.0	0.0	0.0	0.0	0.0	0.1	0.0
	Rep B	NA	0.0	0.0	0.0	0.0	0.0	0.1	0.0
	Average	NA	0.0	0.0	0.0	0.0	0.0	0.1	0.0
CO ₂	Rep A	NA	0.0	0.1	0.3	2.2	11.7	22.8	32.7
	Rep B	NA	0.0	0.1	0.3	1.1	12.6	36.1	47.1
	Average	NA	0.0	0.1	0.3	1.7	12.2	29.5	39.9
Foam Plug	Rep A	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Rep B	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Average	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 9:Product balance for the aerobic aquatic metabolism of [14C]Imiprothrin expressedas percent of applied radiocarbon - Goose River (GR) cis (Total system)

	Sample		INCUBATION TIME (Days)							
(% AR)	-	0	1	2	6	13	31	60	101	
cis-Imiprothrin	Rep A	81.9	62.3	43.1	20.1	0.0	0.0	0.0	0.0	
	Rep B	75.5	55.4	47.0	20.0	0.0	0.0	0.0	0.0	
	Average	78.7	58.9	45.1	20.1	0.0	0.0	0.0	0.0	
trans-	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Imiprothrin	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
c/t-PRA	Rep A	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	2.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PGH	Rep A	0.0	3.6	10.1	10.7	16.3	3.0	0.0	0.0	
	Rep B	1.2	6.5	6.9	14.3	19.1	5.3	0.0	0.0	
	Average	0.6	5.1	8.5	12.5	17.7	4.2	0.0	0.0	
CPG-Me	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PG	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CPG (cis UK1)	Rep A	0.0	3.0	10.8	21.9	26.0	35.4	22.7	17.4	
	Rep B	0.0	6.2	13.3	27.0	26.0	36.5	20.5	5.6	
	Average	0.0	4.6	12.1	24.5	26.0	36.0	21.6	11.5	
Others	Rep A	11.9	3.5	2.1	7.5	9.7	0.0	2.1	0.0	
	Rep B	2.7	2.6	0.0	0.0	8.4	0.0	0.0	0.0	
	Average	7.3	3.1	1.1	3.8	9.1	0.0	1.1	0.0	

Table 9 (cont.):	Product balance for the aerobic aquatic metabolism of [¹⁴ C]Imiprothrin expressed
as percent of app	plied radiocarbon Goose River (GR) <i>cis</i> (Water Layer)

	Sample		INCUBATION TIME (Days)						
(% AR)		0	1	2	6	13	31	60	101
cis-Imiprothrin	Rep A	4.4	23.9	27.8	28.1	11.4	3.6	1.6	0.8
	Rep B	3.8	26.8	32.3	29.7	10.8	3.2	2.3	0.5
	Average	4.1	25.4	30.1	28.9	11.1	3.4	2.0	0.7
trans-	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Imiprothrin	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
c/t-PRA	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PGH	Rep A	0.0	0.0	0.0	3.1	1.8	0.0	0.0	0.0
	Rep B	0.0	0.0	0.0	0.0	3.2	0.0	0.0	0.0
	Average	0.0	0.0	0.0	1.6	2.5	0.0	0.0	0.0
CPG-Me	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PG	Rep A	0.0	0.8	1.2	3.6	5.0	12.6	11.4	3.4
	Rep B	0.0	0.0	1.2	3.7	6.0	13.4	6.7	6.5
	Average	0.0	0.4	1.2	3.7	5.5	13.0	9.1	5.0
CPG (cis UK1)	Rep A	0.0	0.0	0.0	0.0	6.4	6.9	4.8	2.1
	Rep B	0.0	0.0	0.0	1.0	5.9	7.4	4.1	4.5
	Average	0.0	0.0	0.0	0.5	6.2	7.2	4.5	3.3
Others	Rep A	0.0	0.0	0.0	4.1	8.4	2.7	1.4	0.5
	Rep B	0.0	0.0	0.0	3.7	7.9	2.6	2.1	0.3
	Average	0.0	0.0	0.0	3.9	8.2	2.7	1.8	0.4

Table 9 (cont.): Product balance for the aerobic aquatic metabolism of [¹⁴C]Imiprothrin expressed as percent of applied radiocarbon - Goose River (GR) *cis* (Sediment extract)

	Sample			INC	UBATION	I TIME (D	ays)		
(% AR)	•	0	1	2	6	13	31	60	101
trans-	Rep A	97.3	65.5	38.3	4.0	1.4	0.0	0.0	0.0
Imiprothrin	Rep B	100.0	65.0	47.1	6.3	1.4	0.0	0.0	0.0
	Average	98.7	65.3	42.7	5.2	1.4	0.0	0.0	0.0
cis-Imiprothrin	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
c/t-PRA	Rep A	0.0	0.0	1.7	1.8	0.0	0.0	0.0	0.0
	Rep B	0.0	0.0	0.0	1.1	0.0	0.0	0.0	0.0
	Average	0.0	0.0	0.9	1.5	0.0	0.0	0.0	0.0
PGH	Rep A	0.0	19.9	21.8	54.9	23.6	0.0	0.9	0.0
	Rep B	0.0	10.7	17.4	50.3	30.9	2.0	1.7	0.0
	Average	0.0	15.3	19.6	52.6	27.3	1.0	1.3	0.0
CPG-Me	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PG	Rep A	0.0	0.0	3.9	5.6	12.2	16.7	12.3	5.3
	Rep B	1.4	0.0	2.1	3.7	9.4	16.7	9.5	4.9
	Average	0.7	0.0	3.0	4.7	10.8	16.7	10.9	5.1
CPG	Rep A	0.0	0.0	23.0	28.7	30.2	46.0	15.8	8.8
(trans UK1)	Rep B	0.0	0.0	18.8	31.9	41.7	49.5	23.6	4.2
	Average	0.0	0.0	20.9	30.3	36.0	47.8	19.7	6.5
Others	Rep A	0.9	8.1	7.6	0.0	15.4	1.2	13.6	0.0
	Rep B	0.0	19.8	8.4	0.0	2.1	0.0	1.8	0.4
	Average	0.5	14.0	8.0	0.0	8.8	0.6	7.7	0.2
Bound	Rep A	0.2	2.5	2.0	6.1	12.3	19.7	25.5	25.1
Residues	Rep B	0.1	1.5	2.2	6.2	9.6	20.2	26.5	27.2
	Average	0.2	2.0	2.1	6.2	11.0	20.0	26.0	26.2
EG	Rep A	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Rep B	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Average	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO2	Rep A	NA	0.1	0.1	0.5	2.1	12.8	22.5	53.1
	Rep B	NA	0.0	0.0	0.5	1.9	9.5	27.4	51.5
	Average	NA	0.1	0.1	0.5	2.0	11.2	25.0	52.3
Foam Plug	Rep A	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Rep B	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Average	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 9 (cont.): Product balance for the aerobic aquatic metabolism of [¹⁴C]Imiprothrin expressed as percent of applied radiocarbon - Goose River (GR) *trans* (Total system)

	Sample		INCUBATION TIME (Days)								
(% AR)	-	0	1	2	6	13	31	60	101		
trans-	Rep A	88.7	48.0	26.5	1.9	0.0	0.0	0.0	0.0		
Imiprothrin	Rep B	89.8	49.1	38.1	3.5	0.0	0.0	0.0	0.0		
	Average	89.3	48.6	32.3	2.7	0.0	0.0	0.0	0.0		
cis-Imiprothrin	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
c/t-PRA	Rep A	0.0	0.0	1.7	1.8	0.0	0.0	0.0	0.0		
	Rep B	0.0	0.0	0.0	1.1	0.0	0.0	0.0	0.0		
	Average	0.0	0.0	0.9	1.5	0.0	0.0	0.0	0.0		
PGH	Rep A	0.0	19.9	21.8	40.7	19.9	0.0	0.0	0.0		
	Rep B	0.0	10.7	17.4	36.8	24.5	2.0	0.0	0.0		
	Average	0.0	15.3	19.6	38.8	22.2	1.0	0.0	0.0		
CPG-Me	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
PG	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Rep B	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Average	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CPG	Rep A	0.0	0.0	23.0	20.6	16.8	37.2	12.5	6.7		
(trans UK1)	Rep B	0.0	0.0	18.8	24.3	26.7	39.8	20.5	3.1		
	Average	0.0	0.0	20.9	22.5	21.8	38.5	16.5	4.9		
Others	Rep A	0.9	9.3	2.1	0.0	15.4	1.2	12.3	0.0		
	Rep B	0.0	17.5	0.0	0.0	2.1	0.0	0.0	0.4		
	Average	0.5	13.4	1.1	0.0	8.8	0.6	6.2	0.2		

Table 9 (cont.): Product balance for the aerobic aquatic metabolism of [¹⁴C]Imiprothrin expressed as percent of applied radiocarbon - Goose River (GR) *trans* (Water layer)

	Sample		INCUBATION TIME (Days)								
(% AR)		0	1	2	6	13	31	60	101		
trans-	Rep A	88.7	48.0	26.5	1.9	0.0	0.0	0.0	0.0		
Imiprothrin	Rep B	89.8	49.1	38.1	3.5	0.0	0.0	0.0	0.0		
	Average	89.3	48.6	32.3	2.7	0.0	0.0	0.0	0.0		
cis-Imiprothrin	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
c/t-PRA	Rep A	0.0	0.0	1.7	1.8	0.0	0.0	0.0	0.0		
	Rep B	0.0	0.0	0.0	1.1	0.0	0.0	0.0	0.0		
	Average	0.0	0.0	0.9	1.5	0.0	0.0	0.0	0.0		
PGH	Rep A	0.0	19.9	21.8	40.7	19.9	0.0	0.0	0.0		
	Rep B	0.0	10.7	17.4	36.8	24.5	2.0	0.0	0.0		
	Average	0.0	15.3	19.6	38.8	22.2	1.0	0.0	0.0		
CPG-Me	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
PG	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Rep B	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Average	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CPG	Rep A	0.0	0.0	23.0	20.6	16.8	37.2	12.5	6.7		
(trans UK1)	Rep B	0.0	0.0	18.8	24.3	26.7	39.8	20.5	3.1		
	Average	0.0	0.0	20.9	22.5	21.8	38.5	16.5	4.9		
Others	Rep A	0.9	9.3	2.1	0.0	15.4	1.2	12.3	0.0		
	Rep B	0.0	17.5	0.0	0.0	2.1	0.0	0.0	0.4		
	Average	0.5	13.4	1.1	0.0	8.8	0.6	6.2	0.2		

Table 9 (cont.):	Product balance for the aerobic aquatic metabolism of [14C]Imiprothrin expressed
as percent of ap	plied radiocarbon - Goose River (GR) trans (Sediment extract)

	Sample	INCUBATION TIME (Days)								
(% AR)	Campio	0	1	2	6	13	31	60	101	
cis-Imiprothrin	Rep A	75.0	64.0	40.8	0.0	0.0	0.0	0.0	0.4	
	Rep B	77.4	59.9	36.6	2.4	0.0	0.0	0.0	0.6	
	Average	76.2	62.0	38.7	1.2	0.0	0.0	0.0	0.5	
trans-	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Imiprothrin	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
c/t-PRA	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PGH	Rep A	0.0	2.4	7.5	21.1	7.7	0.0	0.0	0.0	
	Rep B	0.0	2.5	10.9	22.1	5.2	0.0	0.0	0.0	
	Average	0.0	2.5	9.2	21.6	6.5	0.0	0.0	0.0	
CPG-Me	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PG	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.4	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.2	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.3	
CPG	Rep A	0.0	11.6	15.0	29.0	34.3	48.6	46.6	6.7	
(cis UK1)	Rep B	0.0	10.0	17.3	26.6	36.8	43.4	37.7	7.0	
	Average	0.0	10.8	16.2	27.8	35.6	46.0	42.2	6.9	
Others	Rep A	2.4	0.0	0.0	3.0	16.6	2.2	1.7	0.4	
	Rep B	3.1	2.1	2.9	2.6	12.9	1.9	1.1	0.4	
	Average	2.8	1.1	1.5	2.8	14.8	2.1	1.4	0.4	
Bound	Rep A	0.0	1.2	1.4	5.5	10.1	28.6	31.7	36.8	
Residues	Rep B	0.0	0.8	0.0	5.0	11.1	29.8	32.6	34.8	
	Average	0.0	1.0	0.7	5.3	10.6	29.2	32.2	35.8	
EG	Rep A	NA	0.4	0.0	0.0	0.0	0.0	0.1	0.1	
	Rep B	NA	0.0	0.0	0.0	0.0	0.0	0.1	0.0	
	Average	NA	0.2	0.0	0.0	0.0	0.0	0.1	0.1	
CO ₂	Rep A	NA	0.0	0.0	0.1	0.7	5.6	16.5	44.1	
	Rep B	NA	0.0	0.0	0.1	0.6	9.3	23.4	44.9	
	Average	NA	0.0	0.0	0.1	0.7	7.5	20.0	44.5	
Foam Plug	Rep A	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Table 9 (cont.): Product balance for the aerobic aquatic metabolism of [¹⁴C]Imiprothrin expressed as percent of applied radiocarbon - Golden Lake (GL) *cis* (Total System)

	Sample	e INCUBATION TIME (Days)								
(% AR)	•	0	1	2	6	13	31	60	101	
cis-Imiprothrin	Rep A	94.1	75.0	64.0	40.8	0.0	0.0	0.0	0.0	
	Rep B	89.6	77.4	59.9	36.6	2.4	0.0	0.0	0.0	
	Average	91.9	76.2	62.0	38.7	1.2	0.0	0.0	0.0	
trans-	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Imiprothrin	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
c/t-PRA	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PGH	Rep A	0.0	0.0	2.4	7.5	21.1	7.7	0.0	0.0	
	Rep B	0.0	0.0	2.5	10.9	22.1	5.2	0.0	0.0	
	Average	0.0	0.0	2.5	9.2	21.6	6.5	0.0	0.0	
CPG-Me	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PG	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CPG	Rep A	0.0	11.6	15.0	29.0	34.3	48.6	46.6	6.7	
(cis UK1)	Rep B	0.0	10.0	17.3	26.6	36.8	43.4	37.2	7.0	
	Average	0.0	10.8	16.2	27.8	35.6	46.0	41.9	6.9	
Others	Rep A	2.4	0.0	0.0	0.0	12.1	0.0	0.0	0.0	
	Rep B	3.1	2.1	2.9	0.0	9.1	0.0	0.0	0.0	
	Average	2.8	1.1	1.5	0.0	10.6	0.0	0.0	0.0	

Table 9 (cont.):	Product balance for the aerobic aquatic metabolism of [14C]Imiprothrin expressed
as percent of app	plied radiocarbon - Golden Lake (GL) <i>cis</i> (Water layer)

	Sample	INCUBATION TIME (Days)								
(% AR)		0	1	2	6	13	31	60	101	
cis-Imiprothrin	Rep A	2.3	15.0	13.3	15.9	9.7	2.2	0.9	0.4	
	Rep B	3.1	10.2	15.8	18.5	9.1	1.5	0.0	0.7	
	Average	2.7	12.6	14.6	17.2	9.4	1.9	0.5	0.6	
trans-	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Imiprothrin	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
c/t-PRA	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PGH	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	
CPG-Me	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PG	Rep A	0.0	0.0	1.0	1.9	6.3	12.7	7.4	2.4	
	Rep B	0.0	0.0	1.3	2.6	6.1	11.3	5.7	2.4	
	Average	0.0	0.0	1.2	2.3	6.2	12.0	6.6	2.4	
CPG	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
(cis UK1)	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	
Others	Rep A	0.0	0.0	0.0	3.0	4.5	2.2	1.7	0.4	
	Rep B	0.0	0.0	0.0	2.6	3.8	1.9	1.1	0.4	
	Average	0.0	0.0	0.0	2.8	4.2	2.1	1.4	0.4	

Table 9 (cont.): Product balance for the aerobic aquatic metabolism of [¹⁴ C]Imiprothrin expresse
as percent of applied radiocarbon - Golden Lake (GL) cis (Sediment extract)

	Sample	INCUBATION TIME (Days)								
(% AR)	·	0	1	2	6	13	31	60	101	
trans-	Rep A	95.1	68.7	45.9	13.6	0.0	0.0	0.0	0.0	
Imiprothrin	Rep B	68.4	54.8	12.4	0.0	0.0	0.0	0.0	0.0	
	Average	81.8	61.8	29.2	6.8	0.0	0.0	0.0	0.0	
cis-Imiprothrin	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
c/t-PRA	Rep A	0.0	0.0	2.4	1.4	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	1.2	0.7	0.0	0.0	0.0	0.0	
PGH	Rep A	0.0	7.5	29.9	34.6	29.9	0.0	0.0	0.0	
	Rep B	6.0	10.5	30.2	28.6	2.2	6.5	0.0	0.0	
	Average	3.0	9.0	30.1	31.6	16.1	3.3	0.0	0.0	
CPG-Me	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PG	Rep A	0.0	0.0	3.9	8.5	16.0	11.5	7.7	3.5	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	
	Average	0.0	0.0	2.0	4.3	8.0	5.8	3.9	2.8	
CPG	Rep A	0.0	0.0	21.9	36.9	33.4	50.7	40.1	16.8	
(trans UK1)	Rep B	0.0	0.0	0.0	32.3	24.3	47.7	37.2	7.4	
	Average	0.0	0.0	11.0	34.6	28.9	49.2	38.7	12.1	
Others	Rep A	0.0	17.3	0.0	0.9	13.2	0.0	0.0	0.0	
	Rep B	0.0	18.8	10.8	3.8	16.5	0.0	0.0	0.0	
	Average	0.0	18.1	5.4	2.4	14.9	0.0	0.0	0.0	
Bound	Rep A	0.1	1.0	1.2	5.5	10.9	26.3	29.4	31.5	
Residues	Rep B	0.1	2.0	3.1	6.7	10.8	30.2	39.0	39.8	
	Average	0.1	1.5	2.2	6.1	10.9	28.3	34.2	35.7	
EG	Rep A	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO ₂	Rep A	NA	0.0	0.0	0.2	0.8	8.4	7.4	37.8	
	Rep B	NA	0.0	0.0	0.2	0.5	11.4	18.1	42.0	
	Average	NA	0.0	0.0	0.2	0.7	9.9	12.8	39.9	
Foam Plug	Rep A	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Table 9 (cont.): Product balance for the aerobic aquatic metabolism of [¹⁴C]Imiprothrin expressed as percent of applied radiocarbon - Golden Lake (GL) *trans* (Total system)

	Sample	INCUBATION TIME (Days)								
(% AR)		0	1	2	6	13	31	60	101	
trans-	Rep A	82.3	68.4	54.8	12.4	0.0	0.0	0.0	0.0	
Imiprothrin	Rep B	88.7	61.2	37.3	9.6	0.0	0.0	0.0	0.0	
	Average	85.5	64.8	46.1	11.0	0.0	0.0	0.0	0.0	
cis-Imiprothrin	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
c/t-PRA	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	2.4	1.4	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	1.2	0.7	0.0	0.0	0.0	0.0	
PGH	Rep A	0.0	6.0	10.5	30.2	28.6	2.2	6.5	0.0	
	Rep B	0.0	7.5	29.9	32.2	29.9	0.0	0.0	0.0	
	Average	0.0	6.8	20.2	31.2	29.3	1.1	3.3	0.0	
CPG-Me	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PG	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CPG	Rep A	0.0	0.0	21.9	36.1	25.8	50.7	40.1	16.8	
(trans UK1)	Rep B	0.0	0.0	0.0	31.1	24.3	47.7	37.2	7.4	
	Average	0.0	0.0	11.0	33.6	25.1	49.2	38.7	12.1	
Others	Rep A	0.0	17.3	0.0	0.0	13.2	0.0	0.0	0.0	
	Rep B	0.0	17.3	10.8	2.0	16.5	0.0	0.0	0.0	
	Average	0.0	17.3	5.4	1.0	14.9	0.0	0.0	0.0	

Table 9 (cont.):	Product balance for the aerobic aquatic metabolism of [14C]Imiprothrin expressed
as percent of app	plied radiocarbon - Golden Lake (GL) trans (Water layer)

	Sample	INCUBATION TIME (Days)									
(% AR)		0	1	2	6	13	31	60	101		
trans-	Rep A	8.2	7.5	6.2	3.2	0.0	0.0	0.0	0.0		
Imiprothrin	Rep B	6.4	7.5	8.6	4.0	0.0	0.0	0.0	0.0		
	Average	7.3	7.5	7.4	3.6	0.0	0.0	0.0	0.0		
cis-Imiprothrin	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
c/t-PRA	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
PGH	Rep A	0.0	0.0	0.0	3.3	0.0	0.0	0.0	0.0		
	Rep B	0.0	0.0	0.0	2.4	0.0	0.0	0.0	0.0		
	Average	0.0	0.0	0.0	2.9	0.0	0.0	0.0	0.0		
CPG-Me	Rep A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Rep B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	Average	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
PG	Rep A	0.0	0.0	3.2	6.7	10.3	12.3	11.1	3.5		
	Rep B	0.0	0.0	3.9	8.5	16.0	11.5	7.7	2.1		
	Average	0.0	0.0	3.6	7.6	13.2	11.9	9.4	2.8		
CPG	Rep A	0.0	0.0	0.0	0.8	7.6	0.0	0.0	0.0		
(trans UK1)	Rep B	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0		
	Average	0.0	0.0	0.0	1.0	3.8	0.0	0.0	0.0		
Others	Rep A	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0		
	Rep B	0.0	1.5	0.0	1.8	0.0	0.0	0.0	0.0		
	Average	0.0	0.8	0.0	1.4	0.0	0.0	0.0	0.0		

Table 9 (cont.):	Product balance for the aerobic aquatic metabolism of [¹⁴ C]Imiprothrin ex	xpressed
as percent of ap	plied radiocarbon - Golden Lake (GL) trans (Sediment extract)	

Imiprothrin

Figure 1:Proposed degradation pathway for [imidazolidinyl-5-14C]-Imiprothrin in
water/sediment systems.

Imiprothrin

Test system	Phase	Kinetic	Degradation rates (days)		Chi ² err	R ²
·		model	DT50	DT90		
			Total system			
[<i>cis</i> - ¹⁴ C]-	Goose river	SFO	5.9	19.7	9.913	0.979
Imiprothrin		FOMC	4.4	14.6	14.76	0.9668
	Golden Lake	SFO	5.7	18.9	9.268	0.9847
		FOMC	4.0	13.2	16.04	0.9653
[trans- ¹⁴ C]-	Goose river	SFO	1.6	5.4	2.992	0.997
Imiprothrin		FOMC	1.5	4.9	5.474	0.9957
	Golden Lake	SFO	2.4	7.9	3.629	0.9913
		FOMC	1.6	5.3	17.38	0.9687
			Water layer			
[<i>cis</i> - ¹⁴ C]-	Goose river	SFO	2.7	9.1	5.417	0.993
Imiprothrin		FOMC	2.2	7.4	9.763	0.9876
	Golden Lake	SFO	3.9	13.1	9.108	0.9874
		FOMC	3.0	9.9	14.22	0.9756
[trans- ¹⁴ C]-	Goose river	SFO	1.3	4.2	5.075	0.9935
Imiprothrin		FOMC	1.3	4.4	5.257	0.9936
	Golden Lake	SFO	2.2	7.2	3.386	0.987
		FOMC	1.9	6.3	6.809	0.9841

Table 10: Degradation rates of Imiprothrin in water/sediment systems.

SFO – single first-order, FOMC – first-rder with multiple compartment.