

Persistence assessment in the regulatory assessment and management of chemicals

Setac Europe 34th Annual Meeting

7 May 2024

Romanas Cesnaitis, Lale Carstensen (former trainee in ECHA), Anna-Maija Nyman, Doris Hirmann, Anne-Mari Karjalainen, Kostas Andreou, <u>Marta Sobanska</u> and Anu Kapanen

Content of the presentation

- → Alternative approaches in persistence assessment under REACH and CLP – Weight of Evidence
- → Modelling in persistence assessment
- → Prioritised groups of potentially PBT/vPvB and PMT/vPvM substances

Persistency in the regulatory assessment

- → Key property driving hazard, exposure and risk
- → Information on Persistence is needed for many purposes
 - ✓ To fulfil regulatory information requirements
 - ✓ PBT/vPvB and PMT/vPvM assessment
 - ✓ Exposure assessment
 - ✓ Risk assessment
- → Persistence is mostly assessed based on experimental data
 - ✓ Data generation often time consuming and expensive
 - ✓ How to use alternative non-testing methods to speed up the assessment?

Persistence assessment under REACH and CLP

Screening (indication) of (P) persistence

- ready biodegradation tests
- other degradation screening tests (e.g. enhanced ready test, tests on inherent biodegradability)
 - predictions from adequate (Q)SAR models
 - other adequate information

Assessment of persistence

- simulation testing on degradation in surface water, soil and sediment;
- other adequate information, such as information from field studies or monitoring studies

Thresholds in Persistence assessment REACH/CLP								
Screening	Mineralisation (%)							
	Readily biodegradable	Not P/vP						
	Inherently biodegradable fulfilling spesific criteria	Not P/vP						
Assessment	Half-life (days)							
Water	> 40 (marine > 60)	Р						
fresh/estuarine	> 60	vP						
Sediment	> 120 (marine > 180)	Р						
fresh/estuarine	> 180	vP						
Soil	> 120	Р						
	> 180	vP						

Potentially

persistent

(REACH)

Use of (Q)SARs in persistence assessment

(Q)SARs as part of Weight-of-Evidence in P-assessment

- → (Q)SAR estimates may be used for a preliminary identification of substances with a potential for persistence.
- → It is recommended to use combined results from three estimation models in the EPI Suite[™]
 - BIOWIN 2, 3 and 6.
- → Degradation half-lives based on QSAR models using data from ready biodegradation tests should not be used for comparison with the P/vP criteria.
- \rightarrow (Q)SAR provide valuable information for:
 - ✓ screening potential P/vP substances,
 - ✓ supporting read-across assessment,
 - \checkmark grouping of substances (similarity or trend analysis),
 - \checkmark predicting degradation potential of constituens of a UVCB substances,
 - $\checkmark\,$ predicting formation of degradation products.

Use of (Q)SARs in environmental hazard assessment for P-screening

Aim:

- Compare newly generated experimental data (REACH) with QSAR prediction.

Motivation:

- (Q)SAR is one of the REACH Annex XI adaptation methods to fulfil the REACH standard information requirements.
- Can be useful to assess properties of substances/constituents (including profiling UVCB/multi for PBT profiling) if no experimental data is available.

1. Are **hazards** assessed differently when using **QSARs** compared to experimental studies?

2. What is the impact for **regulatory** decision-making?

*Experimental data generated via REACH Evaluation processes and formally assessed 'as accepted'

Assessment of (Q)SARs: Principles

Three-staged flagging for substances out of the applicability domain and/or need extra care

Flag A (model)

- SAT SaturateSolublity (Effect level exceeds WS by factor 10)
- ACR AcuteToChronicRatios (empirically derived classspecific ratio)
- KOW1 LogKowCutOff (endpointspecific)
- MW DomainOfApplicability (MW > 1000)

Flag B (user guide)

- MET inorganics, inorganic salts and metals including organometals
- HYD hydrolytically unstable or highly reactive chemicals
- SALT complex) salts SMILES is changed to neutral species automatically
- Kow or MW or FRAG (fragment) or FLU (perfluorinated substance) or CNC (imidazole ring, quaternary nitrogen, nitrogen heterocycles other than pyridine) out of domain
- ION ionized at pH 4-9

Flag C (ECHA additional)

R2 - of ECOSAR class is < 0.6

- N (number) of substances used in the training set of the class is < 5
- ION ionizable substances; > 90 % pH range 4 - 9 (percepta output)
- SURF 1 Surfactans (< 45 mN/m)
- SURF 2 Surfactans (45-60 mN/m)
- KOW input fragment not present in KOWWIN training set

Prediction of environmental fate and hazard properties by QSARs – comparison to experimental data

<u>Chronic fish toxicity (OECD TG</u> 210)

- 176 substances
 - 89 with experimental data (+23 not yet evaluated)
 - 49 organic monoconstituent substances

See ECHA poster: (1.11.P-Th070) How Well QSARs Predict Aquatic Toxicity of REACH Registered Substances? Bioaccumulation (OECD TG 305)

- 49 substances
 - 23 with experimental data
 - (+ 10 under assessment)
 - 17 organic (organometallic) monoconstituent substances

Ready biodegradation (OECD TG 301 B/D/F)

- 40 substances
 - 23 with experimental data (+ 12 under assessment)
 - 11 organic monoconstituent substances

QSAR analysis done with organic mono-constituents

Ready biodegradability

Predictions in the Table below:

- cell in green prediction match experimental degradation level (10-day window not considered);
- cell in red prediction did not match experimental degradation level
- value in yellow there is Flag (specified in Flags column).

Substances	Experimenta	al results	Predictions by specific model										
Experimental TG OECD 301/310	Degradation after 28 d, %	10-day window met	BIOWIN	BIOWIN 2	BIOWIN 3	BIOWIN 6	Pot. P/vP (R.11)	CATALOGIC Kinetic 301F v.13.16 (%, BOD 28d)	CATABOL 301C v.02.08 (%, BOD 28d)	CATALOGIC 301C v.11.15 (%, BOD 28d)	CATABOL 301B v.02.07 (%, ThCO2 28d)	CATALOGIC Kinetic 301B v.02.09 (%, ThCO2 28d)	Flags
301 B	0-5	n/a	NO	0.0	1.86	0	YES	21	0	1	0	1.12	Cata. models - 36.36-90.91% of correct fragments.
301 D	0-5	no	NO	0.0	1.85	0	YES	0	0	1	0	1.14	Cata. models - 22.22-77.78% of correct fragments.
301 F	50-55	n/a	NO	0.60	2.79	0.09	NO	0	4	6	1.23	0	BIOWINs - FRAG, CNC. Cata. models - 0% of correct fragments.
301 D	60-65	no	NO	0.58	2.79	0.52	NO	0	77	67	71.8	0	BIOWINS 2/3 - FRAG, CNC; BIOWIN 6 - CNC. Cata. model - 71.43% of correct fragments.
301 D	60-65	no	YES	1.0	3.38	0.78	NO	54	74	76	<mark>84.2</mark>	30.5	Cata. models - 73.08-92.31% of correct fragments.
Similar to 310	65-70	yes	NO	0.14	2.96	0.49	NO	6	38	11	34	38.1	BIOWINs - FRAG. Cata. models - 42.86-85.71% of correct fragments.
301 F	65-70	no	YES	0.9	2.81	0.64	NO	59	76	70	99.9	81	BIOWINs - FRAG. Cata. models - 0-66.67% of correct fragments.
301 F	90-95	yes	YES	0.9	2.81	0.64	NO	48	76	70	99.9	58.4	BIOWINs - FRAG. Cata. models - 0-66.67% of correct fragments.
301 B	90-95	yes	NO	0.57	2.62	0.42	NO	85	4	5	1.76	100	Cata. models - 71.43% of correct fraction.
310	90-95	yes	YES	1.0	2.90	0.73	NO	81	39	68	39.4	91.9	BIOWINS - FRAG.
301 F	95-100	yes	YES	0.9	2.81	0.64	NO	59	76	75	99.9	82	BIOWINs - FRAG. Cata. models - 0-66.67% of correct fragments.

٠

Outcome of the project

- → Only category B flags were applicable for predictions for 'Ready Biodegradability':
 - MW is beyond ranges applicable;
 - structure fragments are out of domain of specific model.
- → Current analysis indicates
 - o that summary conclusion from BIOWIN is conservative;
 - that as recommended in Guidance R.11: combination of BIOWIN models predicts potential P/vP substances relatively well;
 - that for non-RBD substances all 5 CATABOL/CATALOGIC models predicted low degradation.
- → Limited number of substances addressed work ongoing.
- → There are some hundreds of RBD studies conducted after 2009 in REACH database methodology developed will be used to extend analysis to substances with valid (curated) RBD studies.

Grouping and read across

ECHA grouping work for prioritisation of hazard and risk assessment

- → Preparatory work to support REACH and CLP processes ⇒ prioritise substances for future EU regulatory risk management (EU RRM).
- → Information (mainly) from REACH registration dossiers
 - ⇒ 'no priority for now'
 - ⇒ more information needed
 - ⇒ EU RRM needed

For P assessment:

- → Often only screening level information available.
- → Grouping approaches to find trends in degradation potential.

 Since 2019: over 6300 substances grouped in
225 groups

EU RRM* proposed for
35% of substances

Examples:

- Flame retardants groups
- <u>Hydrocarbyl siloxanes</u>

Working with Groups -ECHA (europa.eu)

PBT/vPvB and PMT/vPvM candidates

(by end July 2023)

- → For PBT/PMT there is insufficient information for many substances/groups even on screening level
- → Clarification of hazard and consequently regulating PBT/PMT substances may therefore be a long process
- → Greater confidence in QSAR predictions would reduce the number of inconclusive cases
- \rightarrow Reliable QSARs could be used to:
 - ⇒ Provide 'screening' level information
 - Prioritise substances (or constituents) for which data generation is most needed
 - \Rightarrow To speed up action where it matters the most.

No plan yet (7)

No action (184)

(Inconclusive: 25 substances from 5 groups)

* Since 2019, 225 groups were assessed

Relevant guidance

→ REACH Guidance on IR&CSA updated!

- ✓ <u>IR CSA R7b v5.0 202312 en (europa.eu)</u>
- ✓ <u>IR CSA R11 v4.0 202312 en (europa.eu)</u>

CLP Guidance for new hazard classes under drafting!

→ OECD (Q)SAR Assessment Framework: Guidance for the regulatory assessment of (Quantitative) Structure – Activity Relationship models, predictions, and results based on multiple predictions

See ECHA presentation: Wed 10:05

7.02.T-03 - The OECD (Q)SAR Assessment Framework for REACH Dossier Evaluation

Do you have any questions?

ECHA poster: (1.11.P-Th070) *How Well QSARs Predict Aquatic Toxicity of REACH Registered Substances?*

Working for #SaferChemicals

Thank you

The above represents the opinion of the authors and is not an official position of the European Chemicals Agency.

marta.sobanska@echa.europa.eu

echa.europa.eu/subscribe

Connect with us

echa.europa.eu/podcasts

@one_healthenv_eu

EUchemicals