Competent Authority Report

ADDENDUM to Document IIIA, Section 4.2

Study Summaries Active Substance

C₈₋₁₈-TMAC (CAS no. 61789-18-2)

Product-type 8 (Wood Preservatives)

Rapporteur Member State: Italy

May 2014

This Addendum supplements Doc. IIIA Section 4.2 of the First Draft Competent Authority Report (CAR) which was prepared by the RMS (Italy) according to Directive 98/8/EC for the purpose of the review of the existing biocidal active substance **Quaternary ammonium compounds, coco alkyltrimethyl, chlorides** (C_{8-18} -TMAC, CAS number 61789-18-2) as Wood Preservative (Product Type 8).

Analytical methods for the determination of C_{8-18} -TMAC residues in soil and water (drinking-, ground- and surface-water), along with the relevant study summary, were submitted by Akzo Noble Surface Chemistry AB in May 2012 in order to fill the data gaps which had been remarked by the RMS following the evaluation of the original Dossier.

The RMS conclusions, resulting from the evaluation of the new documentation, are available under the relevant evaluation boxes. Note that, in order to facilitate readability, two separate evaluation boxes have been compiled by the RMS (one for residues in soil, one for water).

Secti and	ion A4.2a 4.2c	Analytical met determination thereof, and w	thods for Detection and Identification hods including recovery rates and the limits of for the active substance, and for residues here relevant in/on the following: urface water, tap water and soil	
		1 REFEREN	CE	Official use only
1.1	Reference	for the Determinat	MAC (lyophilised Arquad C-35) Residue Analytical Method ion in Ground, Surface, Tap Water and Soil, DR.U.NOACK- RA14111 / 101025AH	
1.2	Data protection	Yes		
1.2.1	Data owner	AkzoNobel Surfac	e Chemistry AB.	
1.2.2				
1.2.3	Criteria for data protection		the MS after 13 May 2000 on existing [a.s. / b.p.] for the ry into Annex I/IA / authorisation]	
		2 GUIDELINI	ES AND QUALITY ASSURANCE	
2.1	Guideline study	Yes, SANCO/825/0	0 rev. 7 (17/03/04)	X
2.2	GLP	Yes		
2.3	Deviations	analytical verificat according to the str	te of the Surface Water was prolonged after sensoric and ion until 2 months and the test item name was changed udy "Content of the Active Ingredients and Relevant cified under Literature.	
		3 MATERIA	LS AND METHODS	
3.1	Preliminary treatment			
3.1.1	Sample	Spiking solutions	of the test item	774
	preparation	I (100 μg/L) II (1000 μg/L) III (2500 μg/L)	 Mixed standard spiking solution diluted by total factor 10000 from the stock solution with acetonitrile Mixed standard spiking solution diluted by total factor 1000 from the stock solution with acetonitrile Mixed standard spiking solution diluted by total factor 400 from the stock solution with acetonitrile: HPLC water (60:40) + 1 % formic acid 	X*
		IV (25000 μg/L)	= Mixed standard spiking solution diluted by total factor 40 from the stock solution with acetonitrile: HPLC water (60:40) + 1 % formic acid	
		Spiking solutions	of the standards	
		- 15	= Mixed standard spiking solution diluted by total factor 100000 from active ingredient stock solutions with acetonitrile	
		VI (100 μg/L)	= Mixed standard spiking solution diluted by total factor 10000 from active ingredient stock solutions with acetonitrile	

Total Mark		Ĭ
Section A4.2a and 4.2c	Analytical Methods for Detection and Identification Analytical methods including recovery rates and the limits of determination for the active substance, and for residues thereof, and where relevant in/on the following: Ground water, surface water, tap water and soil	
	 VII (250 μg/L) = Mixed standard spiking solution diluted by total factor 4000 from active ingredient stock solutions with acetonitrile VIII (2500 μg/L) = Mixed standard spiking solution diluted by total factor 400 from active ingredient stock solutions with acetonitrile IX (1000 μg/L) = Mixed standard spiking solution diluted by total factor 1000 from active ingredient stock solutions with acetonitrile 	
	Ground Water, Surface Water and Tap Water $1 \times LOQ~(0.1~\mu g/L)$ for the test item $5 \times LOQ~(0.1~\mu g/L)$ for the test item $5 \times LOQ~(0.1~\mu g/L)$ for the test item $5 \times LOQ~(0.1~\mu g/L)$ for the spiking solution I in a 200 mL measuring flask and filled up to 200 mL with methanol. Samples were given over Strata-X cartridges (conditioned with 10 mL acetonitrile $+~0.1\%$ TFA, after that $10 \times L$ acetonitrile $+~HPLC$ water $(10:90)$). The cartridges were washed with $5 \times L$ methanol : HPLC water $(10:90)$. After drying, the cartridges were eluted with $10 \times L$ acetonitrile $+~0.1~\%$ TFA and evaporated to dryness at $40~^{\circ}C$ on the rotary evaporator. The residue was taken up in $1 \times L$ acetonitrile : HPLC water $+~1\%$ HCOOH $(60:40)$ under $30 \times L$ seconds sonification.	
	10 x LOQ (1.0 μg/L) for the test item 5 samples of 180 mL corresponding water were spiked with 180 μL of the spiking solution II in a 200 mL measuring flask and filled up to 200 mL with methanol. Further steps according to 1x LOQ. 1 x LOQ (0.014 μg/L) for the active ingredients 5 samples of 180 mL corresponding water were spiked with 252 μL of the spiking solution V in a 200 mL measuring flask and filled up to 200 mL with	
	methanol. Further steps according to 1x LOQ of the test item. 10 x LOQ (0.14 μg/L) for the active ingredients 5 samples of 180 mL corresponding water were spiked with 252 μL of the spiking solution VI in a 200 mL measuring flask and filled up to 200 mL with methanol. Further steps according to 1x LOQ of the test item. Control 2 samples of 180 mL corresponding water were prepared each for the test item	
	and compounds as described for the 1 x LOQ. Matrix effect Matrix Control for TMAC (lyophilised Arquad C-35): 50 µL of the spiking solution I were added to 0.45 mL of one control sample	X**

Section A4.2a	Analytical Methods for Detection and Identification	
and 4.2c	Analytical methods including recovery rates and the limits of determination for the active substance, and for residues thereof, and where relevant in/on the following:	
	Ground water, surface water, tap water and soil	
	after sample preparation.	
	Matrix Control for C8-, C10-, C12-, C14-, C16-, C18- and C18-unsaturated trimethylammonium chloride: 50 μL of the spiking solution VI were added to 0.45 mL of one control sample after sample preparation.	
	Soil 1 x LOQ (0.05 mg/kg) for the test item 5 samples of 5 g soil were weighed into 50 mL centrifuge tubes, 0.505 mL HPLC water, spiked with 100 μL of the spiking solution III and then homogenized. 10 mL acetonitrile + 1 % TFA were added and treated for 10 minutes on the rotary shaker at 80 rounds per minute, then sonificated at room temperature for 5 minutes. After the extraction, the samples get centrifuged for 5 minutes on 3000 rounds per minute and then the supernatant was transferred to a new 50 mL centrifuge tube. This extraction was repeated twice, but the second and third extraction contained 5 mL acetonitrile + 1 % TFA instead of 10 mL. All 3 supernatants were united in the corresponding centrifuge tube filled up to 20 mL with acetonitrile and centrifuged again under same conditions. 10 x LOQ (0.5 mg/kg) for the test item 5 samples of 5 g soil were weighed into 50 mL centrifuge tubes, 0.505 mL HPLC water, spiked with 100 μL of the spiking solution IV and then homogenized. Further steps according to 1x LOQ. 1 x LOQ (0.00714 mg/kg) for the active ingredients 5 samples of 5 g soil were weighed into 50 mL centrifuge tubes, humidified with 0.505 mL HPLC water, spiked with 142.8 μL of the spiking solution VII and then homgenized. Further steps according to 1x LOQ of the test item. 10 x LOQ (0.0714 mg/kg) for the active ingredients 5 samples of 5 g soil were weighed into 50 mL centrifuge tubes, humidified with 0.505 mL HPLC water, spiked with 142.8 μL of the spiking solution VIII and then homgenized. Further steps according to 1x LOQ of the test item.	
	Control 2 samples of 5 g soil were prepared without spiking as decribed for the 1 x LOQ.	

Section A4.2a and 4.2c	SECURE SECURE DE L'ACCIONNO SECURE DE L'ACCIONNE DE L'ACC							
	CONTRACTOR CONTRACTOR SERVICE CONTRACTOR SERVICES	(lyophilised Arquad C-35): on III were added to 0.99 mL of one control ration.	X*					
212 0	unsaturated trimethylammo 10 µL of the spiking soluti sample after sample prepar	on IX were added to 0.99 mL of one control						
3.1.2 Cleanup	Not performed							
3.2 Detection								
3.2.1 Separation method	UPLC-MS/MS							
3.2.2 Detector	Autosampler Binary Solvent Manager Column Manager Detection Software Analytical balance Balance SPE cartridges Rotary evaporator Ultrasonic bath Rotary shaker Centrifuge Displacement pipettes	Acquity UPLC, Waters Acquity UPLC, Waters Acquity UPLC, Waters Mass selective detector, Xevo, Acquity UPLC, Waters MassLynxTM 4.1, SCN 729, Waters LA230S, Sartorius EW3000-2M, Kern Strata-X Polymeric RP (200 mg), batch no. S300-144, Phenomenex Büchi Sonorex Super RK 510 H, Bandelin REAX 2, Heidolph Megafuge 1.0, Heraeus 10-100 µL, Gilson 50-250 µL, Gilson 100 -1000 µL, Gilson						
	Piston stroke pipette Reagents	2 - 20 μL, Thermo Scientific 20 - 200 μL, Thermo Scientific 200- 1000 μL, Thermo Scientific Acetonitrile, gradient grade, VWR HPLC-water, gradient grade, VWR Methanol, gradient grade, VWR Formic acid (HCOOH), 98-100 %, Sigma-Aldrich Trifluoro acetic acid (TFA), peptid analysis, Roth						

Section A4.2a and 4.2c	Analytical Methods for Detection and Identification Analytical methods including recovery rates and the limits of determination for the active substance, and for residues thereof, and where relevant in/on the following:								
	Ground water, surface water, tap water and soil								
	Ground water, s CONDITIONS C Column Column Tempera Mobile Phase Gradient table Time [min] 0.0 1.0 3.0 5.0 5.1 6.0 6.1 7.0 Flow rate Run time Injection volume CONDITIONS C	A [%] 45 45 25 25 5 45 45	Acqui 50 x 2 30 °C Pump Pump 0.5 ml 7.0 mi 3.0 μL	ty UPLC H .1 mm, bate A: HPLC v B: acetonit B [%] 55 75 75 95 95 55 55	rile + 1 % f	formic acid			
	Type Ionisation mode Detector conditi	Multi	Reaction Mospray posi	Iode (MRM tive)				
	Condition		C8- TMAC	C10- TMAC	ngredient C12- TMAC	C-14 TMAC			
	Precursor ion [Da		172.24	200.27	228.30	256.33			
	Product ion, Quai		60.18	60.17	60.17	60.17			
	Product ion, Cont	f [Da]	57.18	57.18	57.18	57.18			
	Dwell time [s]		0.018	0.018	0.018	0.018			
	Cone Voltage [V]]	34	40	40	46			
	Collision energy,	Quan [eV]	20	22	24	26			
	Collision energy,	Conf [eV]	22	24	26	26			

Section and 4	on A4.2a 1.2c	Analytical Methods for Detection and Identification Analytical methods including recovery rates and the limits of determination for the active substance, and for residues thereof, and where relevant in/on the following:					
		Ground water, surface water	er, tap wate	er and son	ï		
			1	Active Ingredier	ıt		
		Condition	C16- TMAC	C18-TMAC unsaturated	C-18 TMAC		
		Precursor ion [Da]	284.43	310.42	312.46		
		Product ion, Quan [Da]	60.17	60.17	60.17		
		Product ion, Conf [Da]	57.18	69.09	57.18		
		Dwell time [s]	0.018	0.018	0.018		
		Cone Voltage [V]	48	52	52		
		Collision energy, Quan [eV]	28	30	28		
		Collision energy, Conf [eV]	28	30	30		
3.2.3	Standard(s) Interfering substance(s)	Capillary voltage Source temperature Cone gas flow (N ₂) Desolvation gas temperature Desolvation gas flow (N ₂) Collision gas pressure (Ar) Octyltrimethylammonium chl Decyltrimethylammonium chl Dodecyltrimethylammonium Tetradecyltrimethylammonium Hexadecyltrimethylammonium Stearyltrimethylammonium Stearyltrimethylammonium Arquad O-50 (C18 unsaturate	oride (Lab. loride (Lab. chloride (La m chloride (m chloride (hloride (Lab	/h C L/h x. 3.01 x 10 ⁻³ m ID 14362) ID 14363) ab. ID 14364) Lab. ID 14366) Lab. ID 14366)	K		
3.3	Linearity					7	
3.3.1	Calibration range	1 – 100 μg/L for C8-, C10-, C trimethylammonium chloride	-24	C16-, C18- and	C18-unsaturated	1 X1	
3.3.2	Number of measurements	6 concentrations				X1	
3.3.3	Linearity	The analytical system gave a 100 µg/L for C8-, C10-, C12-trimethylammonium chloride.	, C14-, C16	-, C18- and C18	8-unsaturated	X1 992.	

	ion A4.2a 4.2c	Analytic determinent thereof,	cal method nation for and where	ls including i the active su	ion and Iden recovery rate obstance, and on the follow ater and soil	es and the	
3.4	Specificity: interfering substances	specific properties of the confirmate corresponsistem. E which was	recursor and prion methods. ding two converted for taps s subtracted f	product ions of the mean responsation of the mean responsation of the mean mean mean mean mean mean mean mea	ometric method, the test item for onses of the blan re lower than 30 is a slightly higher neasured concen-	both quantif k values of t % of LOQ er amount of	ication and the for each test
3.5	Recovery rates at different levels	Recovery	Component	AC (lyophilised) Method	Arquad C-35) Concentration	LOQ Level	Mean Recovery Rate [%]
				Quantification	0.1 μg/L 1.0 μg/L	1x LOQ 10x LOQ	<loq 90</loq
			C ₈ -TMAC	Confirmation	0.1 μg/L 1.0 μg/L	1x LOQ 10x LOQ	<loq 93</loq
			C ₁₀ -TMAC	Quantification	0.1 μg/L 1.0 μg/L	1x LOQ 10x LOQ	<loq 93<="" td=""></loq>
				Confirmation	0.1 μg/L 1.0 μg/L	1x LOQ 10x LOQ	<loq 91</loq
			C ₁₂ -TMAC	Quantification	0.1 μg/L 1.0 μg/L	1x LOQ 10x LOQ	83
				Confirmation	0.1 μg/L 1.0 μg/L	1x LOQ 10x LOQ	86 95
		Ground		Quantification	0.1 μg/L 1.0 μg/L	1x LOQ 10x LOQ	81
		water	C ₁₄ -TMAC	Confirmation	0.1 μg/L 1.0 μg/L	1x LOQ 10x LOQ	92
				Quantification	0.1 μg/L 1.0 μg/L	1x LOQ 10x LOQ	< LOQ 79
			C ₁₆ -TMAC	Confirmation	0.1 μg/L 1.0 μg/L	1x LOQ 10x LOQ	<loq 81</loq
			Section of the sectio	Quantification	0.1 μg/L 1.0 μg/L	1x LOQ 10x LOQ	<loq 72<="" td=""></loq>
			C ₁₈ -TMAC	Confirmation	0.1 μg/L 1.0 μg/L	1x LOQ 10x LOQ	<loq 80</loq
			C ₁₈ -TMAC	Quantification	0.1 μg/L 1.0 μg/L	1x LOQ 10x LOQ	<loq 71<="" td=""></loq>
			unsat.	Confirmation	0.1 μg/L 1.0 μg/L	1x LOQ 10x LOQ	<loq 71<="" td=""></loq>
				and a self-train	1.0 μg/L	TOX LOQ	71

C₈₋₁₈-TMAC

determi thereof,	nation for and where	Is including the active sue relevant increase water, tap water	bstance, and on the follov	l for resid	
Matrix	Component	Method	Concentration	LOQ Level	Mean Recovery Rate [%]
		Quantification	0.1 μg/L	1x LOQ	< LOQ
	C ₈ -TMAC	Quantification	1.0 μg/L	10x LOQ	81
	C ₈ -TWIAC	Confirmation	0.1 μg/L	1x LOQ	< LOQ
		Confirmation	1.0 μg/L	10x LOQ	82
		Quantification	0.1 μg/L	1x LOQ	< LOQ
	C ₁₀ -TMAC	Quantification	1.0 μg/L	10x LOQ	85
	C ₁₀ -1 MAC	Confirmation	0.1 μg/L	1x LOQ	< LOQ
		Commination	1.0 μg/L	10x LOQ	84
		Quantification	0.1 μg/L	1x LOQ	82
		Quantification	1.0 μg/L	10x LOQ	89
	C ₁₂ -TMAC	Confirmation	0.1 μg/L	1x LOQ	82
		Confirmation	1.0 μg/L	10x LOQ	89
	C ₁₄ -TMAC	Quantification	0.1 μg/L	1x LOQ	81
Surface			1.0 μg/L	10x LOQ	88
water		Confirmation	0.1 μg/L	1x LOQ	94
			1.0 μg/L	10x LOQ	88
	a m.u.a	Quantification -	0.1 μg/L	1x LOQ	< LOQ
			1.0 μg/L	10x LOQ	77
	C ₁₆ -TMAC	G	0.1 μg/L	1x LOQ	< LOQ
		Confirmation	1.0 μg/L	10x LOQ	79
		0 1:5 1:	0.1 μg/L	1x LOQ	< LOQ
		Quantification	1.0 μg/L	10x LOQ	72
	C ₁₈ -TMAC	G	0.1 μg/L	1x LOQ	< LOQ
		Confirmation	1.0 μg/L	10x LOQ	74
			0.1 μg/L	1x LOQ	< LOQ
	C ₁₈ -TMAC	Quantification	1.0 μg/L	10x LOQ	71
	unsat.	G ~	0.1 μg/L	1x LOQ	< LOQ
		Confirmation	1.0 μg/L	10x LOQ	73

nd 4.2c	Analytical methods including recovery rates and the limits of determination for the active substance, and for residues thereof, and where relevant in/on the following: Ground water, surface water, tap water and soil							
	Matrix	Component	Method	Concentration	LOQ Level	Mean Recovery Rate [%]		
			One matification	0.1 μg/L	1x LOQ	< LOQ		
		C TMAC	Quantification	1.0 μg/L	10x LOQ	88		
		C ₈ -TMAC	Confirmation	0.1 μg/L	1x LOQ	< LOQ		
			Confirmation	1.0 μg/L	10x LOQ	94		
			Quantification	0.1 μg/L	1x LOQ	< LOQ		
		C ₁₀ -TMAC	Quantification	1.0 μg/L	10x LOQ	93		
		C ₁₀ -TWAC	Confirmation	0.1 μg/L	1x LOQ	< LOQ		
			Commination	1.0 μg/L	10x LOQ	93		
			Quantification	0.1 μg/L	1x LOQ	81		
		C ₁₂ -TMAC	Quantification	1.0 μg/L	10x LOQ	94		
			Confirmation	0.1 μg/L	1x LOQ	84		
			Commutation	1.0 μg/L	10x LOQ	94		
		C ₁₄ -TMAC	Quantification - Confirmation	0.1 μg/L	1x LOQ	82		
	Тар			1.0 μg/L	10x LOQ	95		
	water			0.1 μg/L	1x LOQ	85		
				1.0 μg/L	10x LOQ	94		
			C_{16} -TMAC Quantification - Confirmation	0.1 μg/L	1x LOQ	< LOQ		
		C ₁₆ -TMAC		1.0 μg/L	10x LOQ	85		
		- 10		0.1 μg/L	1x LOQ	< LOQ		
				1.0 μg/L	10x LOQ	84		
			Quantification	0.1 μg/L	1x LOQ	< LOQ		
		C ₁₈ -TMAC		1.0 μg/L	10x LOQ	85		
			Confirmation	0.1 μg/L	1x LOQ	< LOQ		
				1.0 μg/L	10x LOQ	99		
			Quantification	0.1 μg/L	1x LOQ	< LOQ		
					+			
		unsat.	Confirmation					
		C ₁₈ -TMAC unsat.		1.0 µg/L 0.1 µg/L 1.0 µg/L	10x LOQ 1x LOQ 10x LOQ	76 <loq 78</loq 		

C₈₋₁₈-TMAC

d 4.2c	determine thereof,	cal method nation for and where	Is for Detection Is including the active subservers to water, tap water, tap water.	ecovery rate bstance, and on the follov	es and the	
	Matrix	Component	Method	Concentration	LOQ Level	Mean Recovery Rate [%]
			Quantification -	0.05 mg/kg	1x LOQ	< LOQ
		C ₈ -TMAC		0.5 mg/kg	10x LOQ	95
		C ₈ Tivil IC	Confirmation	0.05 mg/kg	1x LOQ	< LOQ
			Commination	0.5 mg/kg	10x LOQ	95
			Quantification	0.05 mg/kg	1x LOQ	< LOQ
		C ₁₀ -TMAC	Quanting	0.5 mg/kg	10x LOQ	96
		C10-TWAC	Confirmation	0.05 mg/kg	1x LOQ	< LOQ
				0.5 mg/kg	10x LOQ	98
			Quantification	0.05 mg/kg	1x LOQ	98
		C ₁₂ -TMAC		0.5 mg/kg	10x LOQ	99
			Confirmation	0.05 mg/kg	1x LOQ	95
				0.5 mg/kg	10x LOQ	99
		C ₁₄ -TMAC	Quantification	0.05 mg/kg	1x LOQ	93
	Soil			0.5 mg/kg	10x LOQ	96
			Confirmation	0.05 mg/kg	1x LOQ	95
				0.5 mg/kg	10x LOQ	95
			Quantification	0.05 mg/kg	1x LOQ	< LOQ
		C ₁₆ -TMAC		0.5 mg/kg	10x LOQ	82
			Confirmation	0.05 mg/kg	1x LOQ	< LOQ
				0.5 mg/kg	10x LOQ	85
			Quantification	0.05 mg/kg	1x LOQ	< LOQ
		C ₁₈ -TMAC		0.5 mg/kg	10x LOQ	82
			Confirmation	0.05 mg/kg	1x LOQ	< LOQ
				0.5 mg/kg	10x LOQ 1x LOQ	81 < LOQ
			Quantification	0.05 mg/kg 0.5 mg/kg	10x LOQ	90
		C ₁₈ -TMAC unsat.		0.05 mg/kg	1x LOQ	< LOQ
			Confirmation	0.5 mg/kg	10x LOQ	90

C₈₋₁₈-TMAC

Section A4.2a and 4.2c	Analytic determine thereof,	cal method nation for and wher	ds for Detections including the active sure relevant increases water, tap w	recovery rate obstance, and on the follow	es and the I for resid				
	Recovery rates of active ingredients								
	Matrix	Component	Method	Concentration	LOQ Level	Mean Recovery Rate [%]			
		G	Quantification	0.014 μg/L 0.14 μg/L	1x LOQ 10x LOQ	91			
		C ₈ -TMAC	Confirmation	0.014 μg/L 0.14 μg/L	1x LOQ 10x LOQ	95 93			
			Quantification	0.014 μg/L 0.14 μg/L	1x LOQ 10x LOQ	95			
		C ₁₀ -TMAC	Confirmation	0.14 μg/L 0.14 μg/L 0.14 μg/L	1x LOQ 1x LOQ	96			
			Quantification	0.14 μg/L 0.014 μg/L 0.14 μg/L	1x LOQ 1x LOQ 10x LOQ	101			
		C ₁₂ -TMAC	Confirmation	0.14 μg/L 0.014 μg/L 0.14 μg/L	1x LOQ 1x LOQ 10x LOQ	103			
			Quantification	0.14 μg/L 0.014 μg/L 0.14 μg/L	1x LOQ 1x LOQ 10x LOQ	93			
	Ground water	C ₁₄ -TMAC	Confirmation	0.14 μg/L 0.014 μg/L 0.14 μg/L	1x LOQ 1x LOQ	96			
			Quantification	0.014 μg/L	1x LOQ	99			
		C ₁₆ -TMAC	Confirmation	0.14 μg/L 0.014 μg/L	10x LOQ 1x LOQ	97			
			Quantification	0.14 μg/L 0.014 μg/L	10x LOQ 1x LOQ	74			
		C ₁₈ -TMAC	Confirmation	0.14 μg/L 0.014 μg/L	10x LOQ 1x LOQ	72 79			
			Quantification	0.14 μg/L 0.014 μg/L	10x LOQ 1x LOQ	73			
		C ₁₈ -TMAC unsat.	Confirmation	0.14 μg/L 0.014 μg/L	10x LOQ 1x LOQ	79 79			
			Commination	0.14 μg/L	10x LOQ	80			

Matrix	Component	Method	Concentration	LOQ Level	Mean Recovery Rate [%]
		Quantification	0.014 μg/L	1x LOQ	91
	C ₈ -TMAC	Quantification	0.14 μg/L	10x LOQ	89
	C ₈ -1WAC	Confirmation	0.014 μg/L	1x LOQ	96
		Commination	0.14 μg/L	10x LOQ	90
		Quantification	0.014 μg/L	1x LOQ	94
	C ₁₀ -TMAC	Quantification	0.14 μg/L	10x LOQ	92
	C ₁₀ -1 MAC	Confirmation	0.014 μg/L	1x LOQ	101
		Commination	0.14 μg/L	10x LOQ	94
		Quantification	0.014 μg/L	1x LOQ	101
	C ₁₂ -TMAC	Quantification	0.14 μg/L	10x LOQ	92
	C ₁₂ -1MAC	Confirmation Quantification	0.014 μg/L	1x LOQ	102
			0.14 μg/L	10x LOQ	95
	C ₁₄ -TMAC		0.014 μg/L	1x LOQ	95
Surface		Confirmation	0.14 μg/L	10x LOQ	92
water			0.014 μg/L	1x LOQ	92
			0.14 μg/L	10x LOQ	93
		Quantification	0.014 μg/L	1x LOQ	96
	C ₁₆ -TMAC	Quantimeation	0.14 μg/L	10x LOQ	88
		Confirmation	0.014 μg/L	1x LOQ	87
			0.14 μg/L	10x LOQ	87
		Quantification	0.014 μg/L	1x LOQ	76
	C ₁₈ -TMAC		0.14 μg/L	10x LOQ	73
		Confirmation	0.014 μg/L	1x LOQ	76
			0.14 μg/L	10x LOQ	72 74
	G 771.5	Quantification	0.014 μg/L 0.14 μg/L	1x LOQ 10x LOQ	76
	C ₁₈ -TMAC unsat.		0.14 μg/L 0.014 μg/L	1x LOQ	82
		Confirmation	0.014 μg/L 0.14 μg/L	10x LOQ	76
			0.14 μg/L	TOX LOQ	70

Matrix	Component	Method	Concentration	LOQ Level	Mean Recovery Rate [%]
		Quantification	0.014 μg/L	1x LOQ	92
	C ₈ -TMAC	C	0.14 μg/L	10x LOQ	89
		Confirmation	0.014 μg/L	1x LOQ	97
			0.14 μg/L	10x LOQ	92
		Quantification	0.014 μg/L	1x LOQ	98
	C ₁₀ -TMAC		0.14 μg/L	10x LOQ	94
		Confirmation	0.014 μg/L	1x LOQ	98
			0.14 μg/L	10x LOQ	94
		Quantification	0.014 μg/L	1x LOQ	100 96
	C ₁₂ -TMAC		0.14 μg/L	10x LOQ	
		Confirmation			
				-	
Tap		Quantification	0.14 μg/L	10x LOQ	
water	C ₁₄ -TMAC		0.014 μg/L	1x LOQ	96 96 95 92 94
		Confirmation	0.14 μg/L	10x LOQ	
			0.014 μg/L	1x LOQ	77
	C ₁₆ -TMAC	Quantification	0.14 μg/L	10x LOQ	92
		Confirmation	0.014 μg/L	1x LOQ	76
			0.14 μg/L	10x LOQ	89
		O and Cardina	0.014 μg/L	1x LOQ	90
	C TMAC	Quantification	0.14 μg/L	10x LOQ	86
	C ₁₈ -TMAC	Confirmation	0.014 μg/L	1x LOQ	87
		Commination	0.14 μg/L	10x LOQ	83
		Quantification	0.014 μg/L	1x LOQ	76
	C ₁₈ -TMAC	Quantification	0.14 μg/L	10x LOQ	71
	unsat.	Confirmation	0.014 μg/L	1x LOQ	80
			0.14 μg/L	10x LOQ	79

Matrix	Component	Method	Concentration	LOQ Level	Mean Recovery Rate [%]
		Quantification	0.00714 mg/kg	1x LOQ	90
	C ₈ -TMAC	A RESIDENCE OF THE SECRET OF T	0.0714 mg/kg	10x LOQ	89
	1000 C 101 C 100	Confirmation	0.00714 mg/kg	1x LOQ	95
			0.0714 mg/kg	10x LOQ	92
		Quantification	0.00714 mg/kg 0.0714 mg/kg	1x LOQ 10x LOQ	94
	C ₁₀ -TMAC		0.00714 mg/kg	1x LOQ	93
		Confirmation	0.00714 mg/kg 0.0714 mg/kg	10x LOQ	92
			0.00714 mg/kg	1x LOQ	91
	CO- SON MANAGE NA	Quantification	0.0714 mg/kg	10x LOQ	93
	C ₁₂ -TMAC	More Washington	0.00714 mg/kg	1x LOQ	94
		Confirmation	0.0714 mg/kg	10x LOQ	95
			0.00714 mg/kg	1x LOQ	86
6.3	C ₁₄ -TMAC	Quantification	0.0714 mg/kg	10x LOQ	89
Soil	C ₁₄ -1MAC	Confirmation	0.00714 mg/kg	1x LOQ	88
		Commission	0.0714 mg/kg	10x LOQ	91
		Quantification	0.00714 mg/kg	1x LOQ	80
	C ₁₆ -TMAC	Qualitification	0.0714 mg/kg	10x LOQ	88
	C16-11VIA	Confirmation	0.00714 mg/kg	1x LOQ	85
			0.0714 mg/kg	10x LOQ	90
		Quantification	0.00714 mg/kg	1x LOQ	74
	C ₁₈ -TMAC	Table I part of the last of the last	0.0714 mg/kg	10x LOQ	80
		Confirmation	0.00714 mg/kg	1x LOQ	78
		TO ACCESSORY MAN DESCRIPTION	0.0714 mg/kg	10x LOQ	82
		Quantification	0.00714 mg/kg	1x LOQ	89
	C ₁₈ -TMAC unsat.		0.0714 mg/kg 0.00714 mg/kg	10x LOQ	93
	turiotiti.	Confirmation	0.00714 mg/kg 0.0714 mg/kg	1x LOQ 10x LOQ	96
L.			0.0714 mg/kg	TOX LOQ	96

standard deviation	determi thereof,	cal method nation for and where	Is for Detection Is including to the active sure relevant increases water, tap water, tap water.	ecovery rate bstance, and on the follov	s and the for resid	
	Matrix	Component	Method	Concentration	LOQ Level	Mean Recovery
			0 1:5 1:	0.1 μg/L	1x LOQ	Rate [%]
		C ₈ -TMAC	Quantification	1.0 μg/L	10x LOQ	4.05
		C ₈ Tivilite	Confirmation	0.1 μg/L	1x LOQ	< LOQ
				1.0 μg/L	10x LOQ	6.52
			Quantification	0.1 μg/L	1x LOQ	< LOQ
		C ₁₀ -TMAC		1.0 μg/L	10x LOQ	2.19
			Confirmation	0.1 μg/L 1.0 μg/L	1x LOQ	< LOQ
			Quantification 0.1 µg/L	10x LOQ 1x LOQ	2.49 4.07	
					10x LOQ	2.96
		C ₁₂ -TMAC		0.1 μg/L	1x LOQ	3.88
			Confirmation	1.0 μg/L	10x LOQ	
				0.1 μg/L	1x LOQ	2.91 4.14 3.47
	Ground		Quantification	1.0 μg/L	10x LOQ	
	water	C ₁₄ -TMAC		0.1 μg/L	1x LOQ	3.97
			Confirmation	1.0 μg/L	10x LOQ	3.93
			0	0.1 μg/L	1x LOQ	< LOQ
		C TMAC	Quantification	1.0 μg/L	10x LOQ	5.51
		C ₁₆ -TMAC	Confirmation	0.1 μg/L	1x LOQ	< LOQ
			Commination	1.0 μg/L	10x LOQ	6.06
			Quantification	0.1 μg/L	1x LOQ	< LOQ
		C ₁₈ -TMAC	Quantification	1.0 μg/L	10x LOQ	9.58
		016 111110	Confirmation	0.1 μg/L	1x LOQ	< LOQ
				1.0 μg/L	10x LOQ	5.07
			Quantification	0.1 μg/L	1x LOQ	< LOQ
		C ₁₈ -TMAC		1.0 μg/L	10x LOQ	5.81
		unsat.	Confirmation	0.1 μg/L	1x LOQ	< LOQ
				1.0 μg/L	10x LOQ	4.74

C₈₋₁₈-TMAC

Section A4.2a and 4.2c	Analytic determination thereof,	cal method nation for and where	Is for Detection Is including to the active sure relevant in the water, tap water	ecovery rate bstance, and on the follov	es and the for resid	
	Matrix	Component	Method	Concentration	LOQ Level	Mean Recovery Rate [%]
			Quantification	0.1 μg/L	1x LOQ	< LOQ
		C ₈ -TMAC		1.0 μg/L	10x LOQ	4.97
			Confirmation	0.1 μg/L	1x LOQ	< LOQ
				1.0 μg/L	10x LOQ 1x LOQ	4.21 < LOQ
			Quantification	0.1 μg/L 1.0 μg/L	10x LOQ	4.78
		C ₁₀ -TMAC		0.1 μg/L	1x LOQ	<loq< td=""></loq<>
			Confirmation	onfirmation $ \frac{0.1 \mu\text{g/L}}{1.0 \mu\text{g/L}} = \frac{10 \text{k LOQ}}{10 \text{k LOQ}} = \frac{5.27}{10 \text{k LOQ}} $		
				0.1 μg/L	1x LOQ	0.803
		_	Quantification	1.0 μg/L	10x LOQ	7.81
		C_{12} -TMAC		0.1 μg/L	1x LOQ	2.10
			Confirmation	1.0 μg/L	10x LOQ	5.17
			0	0.1 μg/L	1x LOQ	1.012
	Surface	C TMAC	Quantification	1.0 μg/L	1.0 μg/L 10x LOQ 5.14	5.14
	water	C ₁₄ -TMAC	Confirmation	0.1 μg/L	1x LOQ	2.38
			Commination	1.0 μg/L	10x LOQ	4.65
			Quantification	0.1 μg/L	1x LOQ	< LOQ
		C ₁₆ -TMAC	Quantification	1.0 μg/L	10x LOQ	3.63
		016 1111110	Confirmation	0.1 μg/L	1x LOQ	< LOQ
				1.0 μg/L	10x LOQ	3.76
			Quantification	0.1 μg/L	1x LOQ	< LOQ
		C ₁₈ -TMAC		1.0 μg/L	10x LOQ	7.22
		10	Confirmation	0.1 μg/L	1x LOQ	< LOQ
				1.0 μg/L	10x LOQ	7.23
			Quantification	0.1 μg/L	1x LOQ	< LOQ
		C ₁₈ -TMAC		1.0 μg/L	10x LOQ	6.42
		unsat.	Confirmation	0.1 μg/L	1x LOQ	< LOQ
				1.0 μg/L	10x LOQ	4.58

Matrix	Component	Method	Concentration	LOQ Level	Mean Recovery Rate [%]
		Quantification	0.1 μg/L	1x LOQ	< LOQ
	C ₈ -TMAC		1.0 μg/L	10x LOQ	4.52
	0	Confirmation	0.1 μg/L	1x LOQ	< LOQ
			1.0 μg/L	10x LOQ	3.06
		Quantification	0.1 μg/L	1x LOQ	< LOQ
	C ₁₀ -TMAC		1.0 μg/L	10x LOQ	1.57
		Confirmation	0.1 μg/L	1x LOQ	< LOQ
			1.0 μg/L 0.1 μg/L	10x LOQ 1x LOQ	3.63
		Quantification	1.0 μg/L	10x LOQ	3.19
	C ₁₂ -TMAC		0.1 μg/L	1x LOQ	5.91
		Confirmation	1.0 μg/L	10x LOQ	2.85
			0.1 μg/L	1x LOQ	2.3
Tap	a	Quantification	1.0 μg/L	10x LOQ	2.69
water	C ₁₄ -TMAC	C C	0.1 μg/L	1x LOQ	6.94
		Confirmation	1.0 μg/L	10x LOQ	4.50
		Quantification	0.1 μg/L	1x LOQ	< LOQ
	C ₁₆ -TMAC	Quantification	1.0 μg/L	10x LOQ	3.51
		Confirmation	0.1 μg/L	1x LOQ	< LOQ
			1.0 μg/L	10x LOQ	4.79
		Quantification	0.1 μg/L	1x LOQ	< LOQ
	C ₁₈ -TMAC	Quantification	1.0 μg/L	10x LOQ	3.42
		Confirmation	0.1 μg/L	1x LOQ	< LOQ
			1.0 μg/L	10x LOQ	3.30
		Quantification	0.1 μg/L	1x LOQ	< LOQ
	C ₁₈ -TMAC unsat.		1.0 μg/L	10x LOQ	3.29 < LOQ
	unsut.	Confirmation	0.1 μg/L 1.0 μg/L	1x LOQ 10x LOQ	4.47
			1.0 μg/L	TOX LOQ	7.7

C₈₋₁₈-TMAC

	Matrix	Component	Method	Concentration	LOQ Level	Mean Recovery Rate [%]				
			Quantification	0.05 mg/kg	1x LOQ	< LOQ				
		C ₈ -TMAC	Quantification	0.5 mg/kg	10x LOQ	2.01				
		C8 TIME	Confirmation	0.05 mg/kg	1x LOQ	< LOQ				
				0.5 mg/kg	10x LOQ	5.34				
			Quantification	0.05 mg/kg	1x LOQ	< LOQ				
		C ₁₀ -TMAC		0.5 mg/kg	10x LOQ					
			Confirmation	0.05 mg/kg	1x LOQ					
				0.5 mg/kg	10x LOQ	x LOQ 1.02 x LOQ 1.41 x LOQ 3.49 x LOQ 1.00				
			Quantification	0.05 mg/kg	1x LOQ	X LOQ 5.34 X LOQ < LOQ X LOQ 3.11 X LOQ < LOQ X LOQ 3.21 X LOQ 1.02 X LOQ 3.49				
		C ₁₂ -TMAC		0.5 mg/kg	-					
			Confirmation	0.05 mg/kg						
				0.5 mg/kg						
			Quantification	0.05 mg/kg						
	Soil	C ₁₄ -TMAC		0.5 mg/kg 0.05 mg/kg	-					
			Confirmation	0.03 mg/kg	1					
			0.05 mg/kg							
		C ₁₆ -TMAC	Quantification	0.5 mg/kg	10x LOQ					
			Confirmation	0.05 mg/kg	· ·					
				0.5 mg/kg	10x LOQ	-				
				0.05 mg/kg	1x LOQ					
			Quantification	0.5 mg/kg	10x LOQ	5.92				
		C ₁₈ -TMAC		0.05 mg/kg	1x LOQ	< LOQ				
			Confirmation	0.5 mg/kg	10x LOQ	8.01				
			0	0.05 mg/kg	1x LOQ	< LOQ				
		C ₁₈ -TMAC	Quantification	0.5 mg/kg	10x LOQ	3.24				
		unsat.	Confirmation	0.05 mg/kg	1x LOQ	< LOQ				
			Commination	0.5 mg/kg	10x LOQ	3.04				

Section A4.2a and 4.2c	Analyti determinent thereof,	cal method ination for , and wher	Is for Detection Is including the active sure relevant in the water, tap water	bstance, and on the follov	es and the for resid	
	Relative s	tandard devia	ations of active i	ngredients		
	Matrix	Component	Method	Concentration	LOQ Level	Mean Recovery Rate [%]
			Quantification	0.014 μg/L	1x LOQ	3.28
		C ₈ -TMAC	Quantification	0.14 μg/L	10x LOQ	4.43
		C8 TIVITIE	Confirmation	0.014 μg/L	1x LOQ	6.17
			Commutation	0.14 μg/L	10x LOQ	3.12
			Quantification	0.014 μg/L	1x LOQ	4.3
		C ₁₀ -TMAC	<u></u>	0.14 μg/L	10x LOQ	3.73
		- 10 11	Confirmation	0.014 μg/L	1x LOQ	6.27
				0.14 μg/L	10x LOQ	4.43
			Quantification	0.014 μg/L	1x LOQ	8.23
		C ₁₂ -TMAC		0.14 μg/L	10x LOQ	3.65
		.2	Confirmation	0.014 μg/L	1x LOQ	4.24
				0.14 μg/L	10x LOQ	3.05
			Quantification	0.014 μg/L	1x LOQ	2.7
	Ground	C ₁₄ -TMAC		0.14 μg/L	10x LOQ	3.24
	water	17	Confirmation	0.014 μg/L	1x LOQ	5.17
				0.14 μg/L	10x LOQ	3.69
			Quantification	0.014 μg/L	1x LOQ	4.25
		C ₁₆ -TMAC		0.14 μg/L	10x LOQ	4.15
		- 10	Confirmation	0.014 μg/L	1x LOQ	3.29
				0.14 μg/L	10x LOQ	3.93
			Quantification	0.014 μg/L	1x LOQ	3.0
		C ₁₈ -TMAC		0.14 μg/L	10x LOQ	1.80
		-10 11.1110	Confirmation	0.014 μg/L	1x LOQ	7.5
				0.14 μg/L	10x LOQ	2.69
			Quantification	0.014 μg/L	1x LOQ	3.83
		C ₁₈ -TMAC		0.14 μg/L	10x LOQ	3.3
		unsat.	Confirmation	0.014 μg/L	1x LOQ	6.15
				0.14 μg/L	10x LOQ	3.89

Section A4.2a and 4.2c	Analytic determine thereof,	cal method nation for and where	ls including I the active su	ion and Iden recovery rate bstance, and on the follow ater and soil	es and the I for resid	
	Matrix	Component	Method	Concentration	LOQ Level	Mean Recovery Rate [%]
			Quantification	0.014 μg/L	1x LOQ	5.24
		C ₈ -TMAC	Quantification	0.14 μg/L	10x LOQ	5.38
		Cg-TWIAC	Confirmation	0.014 μg/L	1x LOQ	4.90
			Commination	0.14 μg/L	10x LOQ	4.06
			Quantification	0.014 μg/L	1x LOQ	4.34
		C ₁₀ -TMAC	. 0	0.14 μg/L	10x LOQ	4.54
		C ₁₀ TWIAC	Confirmation	0.014 μg/L	1x LOQ	4.65
			Commination	0.14 μg/L	10x LOQ	5.01
			Quantification -	0.014 μg/L	1x LOQ	5.45
		C ₁₂ -TMAC	Quantification	0.14 μg/L	10x LOQ	4.09
			Confirmation	0.014 μg/L	1x LOQ	2.02
	Surface		Communición	0.14 μg/L	10x LOQ	5.20
			Quantification	0.014 μg/L	1x LOQ	5.19
		C ₁₄ -TMAC	Quantinguiton	0.14 μg/L	10x LOQ	3.98
	water	014 111110	Confirmation	0.014 μg/L	1x LOQ	6.94
				0.14 μg/L	10x LOQ	5.65
			Quantification	0.014 μg/L	1x LOQ	2.46
		C ₁₆ -TMAC	Quantinguiton	0.14 μg/L	10x LOQ	4.23
		016 1111110	Confirmation	0.014 μg/L	1x LOQ	8.35
				0.14 μg/L	10x LOQ	6.52
			Quantification	0.014 μg/L	1x LOQ	2.77
		C ₁₈ -TMAC	Quantification	0.14 μg/L	10x LOQ	2.96
		018 1111110	Confirmation	0.014 μg/L	1x LOQ	5.02
				0.14 μg/L	10x LOQ	5.77
			Quantification	0.014 μg/L	1x LOQ	5.38
		C ₁₈ -TMAC	Quantification	0.14 μg/L	10x LOQ	4.79
		unsat.	Confirmation	0.014 μg/L	1x LOQ	6.47
				0.14 μg/L	10x LOQ	4.08

Analytical Methods for Detection and Identification Analytical methods including recovery rates and the limits of determination for the active substance, and for residues thereof, and where relevant in/on the following: Ground water, surface water, tap water and soil									
Matrix	Component	Method	Concentration	LOQ Level	Mean Recovery Rate [%]				
		Quantification	0.014 μg/L	1x LOQ	8.52				
	C ₈ -TMAC	Quantification	0.14 μg/L	10x LOQ	2.57				
	Cg-TWIAC	Confirmation	0.014 μg/L	1x LOQ	9.19				
		Commination	0.14 μg/L	10x LOQ	4.33				
		Quantification	0.014 μg/L	1x LOQ	10.9				
	C ₁₀ -TMAC	Quantification	0.14 μg/L	10x LOQ	3.46				
	C ₁₀ -TWIAC	Confirmation	0.014 μg/L	1x LOQ	9.42				
		Commination	0.14 μg/L	10x LOQ	2.50				
		Quantification	0.014 μg/L	1x LOQ	9.42				
	C ₁₂ -TMAC	Quantification	0.14 μg/L	10x LOQ	3.60				
		Confirmation	0.014 μg/L	1x LOQ	7.18				
		Committee	0.14 μg/L	10x LOQ	3.19				
		Quantification	0.014 μg/L	1x LOQ	10.5				
Тар	C ₁₄ -TMAC	Quantition	0.14 μg/L	10x LOQ	2.66				
water	C14-11VII (C	Confirmation	0.014 μg/L	1x LOQ	7.48				
			0.14 μg/L	10x LOQ	2.86				
		Quantification	0.014 μg/L	1x LOQ	5.31				
	C ₁₆ -TMAC	Quantification	0.14 μg/L	10x LOQ	2.43				
	C ₁₆ -1WIAC	Confirmation	0.014 μg/L	1x LOQ	0.661				
		Communicion	0.14 μg/L	10x LOQ	3.19				
		Quantification	0.014 μg/L	1x LOQ	10.7				
	C ₁₈ -TMAC		0.14 μg/L	10x LOQ	1.94				
		Confirmation	0.014 μg/L	1x LOQ	12.8				
			0.14 μg/L	10x LOQ	2.65				
		Quantification	0.014 μg/L	1x LOQ	5.02				
	C ₁₈ -TMAC		0.14 μg/L	10x LOQ	15.6				
	unsat.	Confirmation	0.014 μg/L	1x LOQ	3.07				
			0.14 μg/L	10x LOQ	5.85				

Matrix Component Method Concentration LOQ Recovery Rate [%] Rate [%] S.58 0.0714 mg/kg 10x LOQ 1.56 0.0714 mg/kg 10x LOQ 1.56 0.0714 mg/kg 10x LOQ 1.56 0.0714 mg/kg 10x LOQ 1.23 0.0714 mg/kg 10x LOQ 1.23 0.0714 mg/kg 10x LOQ 1.23 0.0714 mg/kg 10x LOQ 1.09 0.0714 mg/kg 10x LOQ 1.09 0.0714 mg/kg 10x LOQ 0.09 0.0714 mg/kg 10x LOQ 0.0714 mg/kg 0.00714 mg/kg 10x LOQ 0.0714 mg/kg 0.00714	and 4.2c	determi thereof.	nation for and wher	the active su	recovery rates abstance, and on the follow ater and soil	for residu	and the same of th
Cg-TMAC Confirmation 0.0714 mg/kg 10x LOQ 1.56		Matrix	Component	Method	Concentration		Recovery
Confirmation			CTMAC	Quantification		- CANTON - ACCUMANTAL	Calculation
C10-TMAC Confirmation 0.0714 mg/kg 10x LOQ 1.09 0.00714 mg/kg 1x LOQ 7.50 0.0714 mg/kg 10x LOQ 7.11 0.00714 mg/kg 1x LOQ 3.09 0.0714 mg/kg 10x LOQ 2.48 0.00714 mg/kg 10x LOQ 3.23 0.00714 mg/kg 10x LOQ 3.23 0.00714 mg/kg 10x LOQ 2.43 0.00714 mg/kg 10x LOQ 2.43 0.00714 mg/kg 10x LOQ 2.43 0.00714 mg/kg 10x LOQ 1.46 0.00714 mg/kg 10x LOQ 1.46 0.00714 mg/kg 10x LOQ 4.34 0.00714 mg/kg 10x LOQ 4.34 0.00714 mg/kg 10x LOQ 3.48 0.00714 mg/kg 10x LOQ 3.57 0.000714 mg/kg 10x LOQ 3.57 0.0000714 mg/kg 10x LOQ 3.50 0.00000714 mg/kg 10x LOQ 3.50 0.00000000000000000000000000000000			Cg-TWAC	Confirmation	170 (F)	20220 0776023	
Confirmation Conf				Quantification	Charles and the Charles and th	525000000000000000000000000000000000000	STANCE.
C12-TMAC Quantification 0.00714 mg/kg 1x LOQ 3.09 0.0714 mg/kg 10x LOQ 2.48 0.00714 mg/kg 1x LOQ 5.38 0.0714 mg/kg 10x LOQ 3.23 0.00714 mg/kg 1x LOQ 1.27 0.0714 mg/kg 10x LOQ 2.43 0.00714 mg/kg 10x LOQ 2.43 0.00714 mg/kg 10x LOQ 2.43 0.00714 mg/kg 10x LOQ 1.46 0.00714 mg/kg 10x LOQ 1.46 0.00714 mg/kg 10x LOQ 1.46 0.00714 mg/kg 10x LOQ 1.75 0.00714 mg/kg 10x LOQ 1.75 0.00714 mg/kg 10x LOQ 1.75 0.00714 mg/kg 10x LOQ 3.48 0.00714 mg/kg 10x LOQ 3.41 0.00714 mg/kg 10x LOQ 3.57 0.00714 mg/kg 10x LOQ 5.38 0.00714 mg/kg 10x LOQ 5.38 0.00714 mg/kg 10x LOQ 3.57 0.00714 mg/kg 10x LOQ 1.95 0.00714 mg/kg 10x LOQ 1.95 0.00714 mg/kg 10x LOQ 2.82 0.00714 mg/kg 0			C ₁₀ -TMAC	Confirmation		ONTRO POSITION	1.00m2.0000
Soil C ₁₄ -TMAC Quantification Q			C ₁₂ -TMAC	Quantification	17, 17, 17, 1	250	
Soil C ₁₄ -TMAC Quantification 0.0714 mg/kg 10x LOQ 2.43				Confirmation		50.00 months (50.00)	NATIONAL PROPERTY.
Confirmation O.00714 mg/kg 1x LOQ 4.34				Quantification 0.00714 mg/kg 1x LOQ 0.0714 mg/kg 10x LOQ	MATERIA PROGRAMMA	1201-120	
C ₁₆ -TMAC Quantification 0.0714 mg/kg 10x LOQ 1.75		Soil	C ₁₄ -TMAC	Confirmation		153	
C ₁₆ -TMAC			27988	Quantification	TO SECURITY OF THE SECOND	Mark Company of the C	18:500-16:5
$C_{18}\text{-TMAC} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$			C ₁₆ -TMAC	Confirmation	0.00714 mg/kg	1x LOQ	4.16
C ₁₈ -TMAC Confirmation 0.00714 mg/kg 1x LOQ 7.13 0.0714 mg/kg 10x LOQ 5.38				Quantification	0.00714 mg/kg	1x LOQ	2.41
Quantification			C ₁₈ -TMAC	Confirmation	0.00714 mg/kg	1x LOQ	7.13
Confirmation $0.00714 \text{ mg/kg} 1x \text{ LOQ} 7.88$ $0.0714 \text{ mg/kg} 10x \text{ LOQ} 2.82$ 6.6 Limit of The limit of detection (LOD) was confirmed via signal to noise ratio (S/N) >> 3			C TMAC	Quantification	0.00714 mg/kg	1x LOQ	3.57
5.6 Limit of The limit of detection (LOD) was confirmed via signal to noise ratio (S/N) >> 3				Confirmation	0.00714 mg/kg	1x LOQ	7.88
determination to be below 1 μg/L of each active ingredient (lowest standard concentration).	3.6 Limit of determination						

Section and 4.2	c	Analytic determine thereof, Ground w	nation for and where ater, surface	s includi the active relevan e water, ta	ng reco e substa t in/on ap water	very rate ance, and the follow and soil	s and the for resid ing:	e limits of
3.7.1 I	Repeatability	Repeatabili Peak area [ty of Injectio	ns of the lo	owest TM.	AC Stan <mark>d</mark> ard	l (1 μg/L)	
					1 μg/L			G .
				Qu	antificatio	n		
		Serial No.	C ₈ -TMAC	C ₁₀ . TMAC	C ₁₂ - TMAC	C ₁₄ - TMAC	C ₁₆ -	
		1	1390.224	1234.920	1324.34	738.323	908.759	
		2	1335.232	1256.569	1130.87	890.785	738.899	
		3	1394.064	1241.206	1150.76	735.395	842.552	
		4	1366.176	1147.080	1319.28	808.140	840.297	
		5	1373.500	1172.517	1254.559	909.348	885.822	
	6	1413.629	1127.185	1269.260	639.645	827.261	b	
	Mean ± SD	1379 ± 27.1	1197 ± 54.6	1242 ± 82.9	787 ± 103	841 ± 58.7		
		RSD [%]	1.97	4.56	6.67	13.1	6.98	
			1	μg/L				
			Quan	tification				
		Serial No.	C ₁₈ -TMAC	(10- IV	IAC			
		1	421.370	617.2	11			
		2	433.231	755.50	07			
		3	370.799	695.10	01			
		4	357.909	626.6	01			
		5	444.026	612.3	79			
		6	342.393	643.0	50			
		Mean ± SD	392 ± 47.9	658 ± 5	66.3			
		RSD [%]	12.2	8.56	5			

Section A4.2a and 4.2c	Analytical Methods for Detection and Identification Analytical methods including recovery rates and the limits of determination for the active substance, and for residues thereof, and where relevant in/on the following:	
	Ground water, surface water, tap water and soil	

	1 μg/L						
		Co	onfirmation				
Serial No.	C ₈ -TMAC	C ₁₀ . TMAC	C ₁₂ - TMAC	C ₁₄ - TMAC	C ₁₆ -		
1	435.072	418.285	395.896	356.626	365.733		
2	405.512	469.199	421.516	335.931	255.208		
3	461.215	407.900	414.087	343.815	295.100		
4	518.216	431.059	382.002	260.208	223.147		
5	431.836	307.118	372.290	420.597	259.193		
6	508.429	364.603	435.560	393.283	305.481		
Mean ± SD	460 ± 45.0	400 ± 56.6	404 ± 24.3	352 ± 55.1	284 ± 49.8		
RSD [%]	9.78	14.2	6.01	15.7	17.5		

	1 μg/L			
	Confirmation			
Serial No.	C ₁₈ -TMAC unsaturated	C ₁₈ -TMAC		
1	167.146	174.213		
2	119.469	150.238		
3	191.966	175.092		
4	132.772	180.254		
5	139.473	201.634		
6	142.706	184.388		
Mean ± SD	149 ± 26.2	178 ± 16.7		
RSD [%]	17.6	9.38		

Section A4.2a and 4.2c	Analytic determine thereof,	Analytical Methods for Detection and Identification Analytical methods including recovery rates and the limits of determination for the active substance, and for residues thereof, and where relevant in/on the following:						
	Ground w	ater, surface	water, tap v	vater and soi	1			
	Repeatabili Peak area [ty of Injection counts]	s of the highe	st TMAC Sta	ndard (100 µ	ıg/L)		
				100 μg/L				
			(Quantification				
	Serial No.	C ₈ -TMAC	C ₁₀ . TMAC	C ₁₂ -TMAC	C ₁₄ - TMAC	C ₁₆ - TMAC		
	1	145909.563	125578.898	127553.391	92657.227	83938.797		
	2	142386.141	125539.898	127097.906	94435.836	86259.641		
	3	140235.344	125382.789	126603.641	92535.320	86439.828		
	4	141739.781	124399.094	124723.320	94793.977	87518.289		
	5	142185.797	125307.328	127174.711	89802.367	84735.445		
	6	138259.594	125070.797	123251.383	89187.852	88836.336		
	Mean ± SD	141786 ± 2544	125213 ± 438	126067 ± 1704	92235 ± 2318	86288 ± 1787		
	RSD [%]	1.79	0.350	1.35	2.51	2.07		
		·						
		100	μg/L					
		Quanti	fication					
	Serial No.	C ₁₈ -TMAC unsaturated	C ₁₈ -TMAC					
	1	48903.551	76385.922					
	2	50940.059	78254.578					
	3	49300.738	76758.727					
	4	48992.922	74647.250					
	5	48559.230	72988.461					
	6	49943.129	75848.422					
	Mean ±	49440 ±	75814 ±					

SD

870

1818

Section A4.2a and 4.2c	Analytical Methods for Detection and Identification Analytical methods including recovery rates and the limits of determination for the active substance, and for residues thereof, and where relevant in/on the following: Ground water, surface water, tap water and soil					s of	
	RSD [%]	1.76	2.40				
				100 μg/L			
	Serial No.	C ₈ -TMAC	C ₁₀ .	Confirmation C ₁₂ - TMAC	C ₁₄ -	C ₁₆ -	
	1	46449.961	42731.965	41690.816	30625.178	26811.406	
	2	44995.422	43049.191	41352.711	30451.139	26690.717	
	3	45453.438	41626.797	41233.141	30617.746	26687.213	
	4	46184.629	42506.770	40792.184	30820.051	27019.242	
	5	45540.762	42064.922	42327.242	29612.289	27243.635	
	6	44983.977	41271.570	40562.996	29217.748	27677.486	
	Mean ± SD	45601 ± 606	42209 ± 679	41327 ± 634	30224 ± 650	27022 ± 386	
	RSD [%]	1.33	1.61	1.53	2.15	1.43	
		10	0 μg/L				
		Conf	firmation				

Section and 4	on A4.2a l.2c	Analytic determine thereof,	al Methods al methods nation for th and where rater, surface	including 1 ne active su relevant in/	ecovery i bstance, a on the fol	rates and tl and for res llowing:	ne limits of	
		Serial No.	C ₁₈ -TMAC unsaturated	C ₁₈ -TMAC				
		1	18609.471	21225.273				
		2	19875.627	20805.477				
		3	18856.027	21332.555				
		4	19694.783	21343.043				
		5	19191.760	20563.359				
		6	19307.389	21099.494				
		Mean ±	19256 ± 482	21062 ± 315				
		RSD [%]	2.50	1.50				
					-			
3.7.2	Independent laboratory validation							

Section A4.2a	Analytical Methods for Detection and Identification
and 4.2c	Analytical methods including recovery rates and the limits of determination for the active substance, and for residues thereof, and where relevant in/on the following:
	Ground water, surface water, tap water and soil
	4 APPLICANT'S SUMMARY AND CONCLUSION
1.1 Materials and methods	See Part 3
4.2 Conclusion	For the external standard the analytical system gave a linear response for C8-, C10-, C12-, C14-, C16-, C18- and C18-unsaturated trimethylammonium chloride, between nominal 1 and 100 μg/L. Ground Water The results confirm that the described method is suitable for the determination of residues of TMAC (lyophilised Arquad C-35) in ground water at limit of quantification 0.1 μg/L. Due to the composition of the test item the C ₈ -,C ₁₀ -, C ₁₆ -,C ₁₈ - and C ₁₈ -unsaturated TMAC components were below the limit of quantification of the analytical system. The other active ingredients gave acceptable recovery and precision for both, quantifier and confirmation trace. For results see 6.4.1. In order to characterise the limit of quantification, even for C ₈ -,C ₁₀ -, C ₁₆ -,C ₁₈ - and C ₁₈ -unsaturated TMAC, an additional set of recovery determinations from ground water was performed at limit of quantification of 0.014 μg/L for each active ingredient, respectively. Acceptable recovery and precision for both, quantifier and confirmation trace were obtained, confirming the
	ability of the method to quantify the active ingredients down to the given limit. Surface Water The results confirm that the described method is suitable for the determination of residues of TMAC (lyophilised Arquad C-35) in surface water at limit of quantification 0.1 µg/L. Due to the composition of the test item the C ₈ -,C ₁₀ -, C ₁₆ -,C ₁₈ - and C ₁₈ -unsaturated TMAC components were below the limit of quantification of the analytical system. The other active ingredients gave acceptable recovery and precision for both, quantifier and confirmation trace. For results see 6.4.1. In order to characterise the limit of quantification, even for C ₈ -,C ₁₀ -, C ₁₆ -,C ₁₈ - and C ₁₈ -unsaturated TMAC, an additional set of recovery determinations from surface water was performed at limit of quantification of 0.014 µg/L for each active ingredient, respectively. Acceptable recovery and precision for both, quantifier and confirmation trace were obtained, confirming the ability of the method to quantify the active ingredients down to the given limit.
	Tap Water The results confirm that the described method is suitable for the determination of residues of TMAC (lyophilised Arquad C-35) in tap

and 4.2c		
anu 4.20	Analytical methods including recovery rates and the limits of determination for the active substance, and for residues thereof, and where relevant in/on the following: Ground water, surface water, tap water and soil	
	water at limit of quantification 0.1 μg/L. Due to the composition of the test item the C ₈ -,C ₁₀ -, C ₁₆ -,C ₁₈ - and C ₁₈ -unsaturated TMAC components were below the limit of quantification of the analytical system. The other active ingredients gave acceptable recovery and precision for both, quantifier and confirmation trace. For results see 6.4.1. In order to characterise the limit of quantification, even for C ₈ -,C ₁₀ -, C ₁₆ -,C ₁₈ - and C ₁₈ -unsaturated TMAC, an additional set of recovery determinations from tap water was performed at limit of quantification of 0.014 μg/L for each active ingredient, respectively. Acceptable recovery and precision for both, quantifier and confirmation trace were obtained, confirming the ability of the method to quantify the active ingredients down to the given limit. Soil The results confirm that the described method is suitable for the determination of residues of TMAC (lyophilised Arquad C-35) in soil at limit of quantification 0.05 mg/kg. Due to the composition of the test item the C8 -,C10-, C16 -,C18- and C18-unsaturated TMAC components were below the limit of quantification of the analytical system. The other active ingredients gave acceptable recovery and precision for both, quantifier and confirmation trace. For results see 6.4.1. In order to characterise the limit of quantification, even for C8 -,C10-, C16 -,C18- and C18-unsaturated TMAC, an additional set of recovery determinations from soil was performed at limit of quantification of 0.00714 mg/kg for each active ingredient, respectively. Acceptable recovery and precision for both, quantifier and confirmation trace were obtained, confirming the ability of the method to quantify the active ingredients down to the given	
4.2.1 Reliability	limit. Based on the assessment of the method include appropriate reliability indicator 0, 1, 2, 3, 4	X
4.2.2 Deficiencies	No	X

	Evaluation by Competent Authorities						
	EVALUATION BY RAPPORTEUR MEMBER STATE						
Date	May 2014						
Materials and methods	An analytical metho MS/MS is available. column, using extern	Analysis was palatanal	performed in gradier Detection was carrie	TMAC residues in soil by LC at mode on a C18 reversed-phased d out by an electrospray tander			
		n of a specific	precursor ion and tw	at of C_{8-18} -TMAC, specificity was o specific product ions (one masonfirmation).			
	C ₈₋₁₈ -TMAC	M	lass transitions				
	C ₈ -TMAC	172.24→57	.17 (quantification) .18 (confirmation				
	C ₁₀ -TMAC	200.27→57	.17 (quantification)				
	C ₁₂ -TMAC	228.30→57	.17 (quantification) .18 (confirmation) .17 (quantification)	_			
	C ₁₄ -TMAC		.18 (confirmation)				
	C ₁₆ -TMAC	284.43→60.17 (quantification) 284.43→57.18 (confirmation)					
	C ₁₈ -TMAC $ \begin{array}{c} 312.46 \rightarrow 60.17 \text{ (quantification)} \\ 312.46 \rightarrow 57.18 \text{ (confirmation)} \end{array} $						
	The following information was available in the original study report as regards the investigated soil (certified LUFA soil No. 2.2, batch Sp2.23311):						
	Туре			rman DIN classification)			
	Origin		LUFA, Obere Langgasse 40 67346 Speyer "Großer Striet" No 585 D-67374 Hanghofer				
	рН		5.5				
	The method was validated at 0.05 mg C ₈₋₁₈ -TMAC/kg and 0.50 mg C ₈₋₁₈ -TMAC /kg. For that purpose, lyophilized Arquad C-35 (C ₈₋₁₈ -TMAC technical material) was used for the spiking of the soil.						
	Additional validation was carried out at 0.00714 mg/kg and 0.0714 mg/kg for each individual constituent of C ₈₋₁₈ -TMAC (C8-TMAC, C10-TMAC C12-TMAC, C14-TMAC, C16-TMAC and C18-TMAC). Soil fortification was performed using the relevant standards.						
	Solutions of mixed standards at 7 different concentration levels were used for calibration.						
Conclusion	down to a level of 0. by SANCO/825/00 a analytical methods. I specific (LC-MS/MS, 0.75 mg C ₈₋₁₈ -TMAC, acceptable range 70–The LOQ (as the lower	S/MS method submitted in May 2012 for the analysis of C_{8-18} -TMAC resolvel of 0.05 mg C_{8-18} -TMAC/kg in soil meets the requirements provide 0/825/00 and the Additional Guidance to TNsG on Data Requirement methods. The method supports the residue definition. The method is heart C-MS/MS, with two mass transitions validated), linear over the range 0 range 70–120%) and precise (%RSD _{n=5} < 20% for either fortification least the lowest validated fortification level) complies with the relevant end-1 mg/kg dw soil; read-across from DDAC data).					
	individual constituen	its of C ₈₋₁₈ -Ti	MAC (C8-TMAC,	$RSD_{n=5}$ were also obtained for C10-TMAC C12-TMAC, C14 and 0.0714 mg/kg each.			
Reliability	2						

Acceptability	Acceptable							
Remarks	X – Minor deviations from SANCO/825/00 rev. 7 have occurred (see general remark below). Also note that rev. 8.1 (16/11/2010) is now available for the Guideline.							
	$X1-7$ concentration levels (with single determination) were considered (calibration in solvents). The linearity range of $1-100~\mu g/L$ for each constituent of C_{8-18} -TMAC corresponds to $0.008-0.75~mg~C_{8-18}$ -TMAC/kg in soil (inferred by the RMS according to the information on sample preparation available in the study report and taking into account that the % of C12-TMAC in the C_{8-18} -TMAC technical material used for spiking is 53.5%).							
	Linearity curves:							
	C ₈₋₁₈ -TMAC	Mass transition	Curve equation	r ²				
	C ₈ -TMAC	172.24→60.17 (quantification) 172.24→57.18 (confirmation	y = 1939.74x y = 647.446x	0.999919 0.999884				
	C ₁₀ -TMAC	200.27→60.17 (quantification) 200.27→57.18 (confirmation)	y = 1953.15x y = 690.483x	0.999961 0.999882				
	C ₁₂ -TMAC	228.30→60.17 (quantification) 228.30→57.18 (confirmation)	y = 1835.66x y = 629.737x	0.999945 0.999758				
	C ₁₄ -TMAC	256.33→60.17 (quantification) 256.33→57.18 (confirmation)	y = 1597.1x y = 509.379x	0.999744 0.999456				
	C ₁₆ -TMAC	284.43→60.17 (quantification) 284.43→57.18 (confirmation)	y = 1543.68x y = 477.949x	0.999779 0.999838				
	C ₁₈ -TMAC	312.46→60.17 (quantification) 312.46→57.18 (confirmation)	y = 1296.88x y = 370.575x	0.999556 0.999068				
	X2 – Since two mass transitions have been investigated, the submitted LC-MS/MS can be concluded to be highly specific.							
	X* – Spiking solutions I to IV of the test item (lyophilized Arquad C-35) are erroneously reported (also in the original study report) to be "mixed standard spiking solutions diluted by a total factor of from the stock solution" instead of "dilution by total factor of from the stock solution of TMAC".							
	X^{**} – To investigate matrix effects, the response of C_{8-18} -TMAC in matrix as well as the response of individual standards in matrix were also considered. According to the original study report, solutions were prepared by fortification of a control sample with lyophilized Arquad C-35 or with the relevant standards, respectively. Satisfactory recovery rates were obtained.							
	General remarks:							
	- No spectrum of the product ions has been provided in the original study report. The selection of the ions used for quantification/confirmation has not been justified, either.							
	available in the	iders C18-unsaturated as not pee original study report, validaticaken into account by RMS-IT (ion data relevant to	C18-unsaturated				
	COMMENTS 1	FROM						
Date	Give date of cor	nments submitted						
Results and discussion	applicant's sum	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state						
	* **							
Conclusion	Discuss if devia	Discuss if deviating from view of rapporteur member state						
Conclusion Reliability		ting from view of rapporteur mem ting from view of rapporteur mem						

Akzo Nobel Surface Chemistry AB	C ₈₋₁₈ -TMAC	May 2014
RMS: Italy		
Remarks		

	Evaluation by Con	npetent Authori	ties				
	EVALUATION BY RAPPORTEUR MEMBER STATE						
Date	May 2014						
Materials and methods	4.2c Water						
	An analytical method for and drinking-water by I on a C18 reversed-phas an electrospray tandem TMAC, specificity was pecific product ions (confirmation).	C-MS/MS is availal se column, using ext mass spectrometer is a chieved by form	ble. Analysis was peternal standards. De in positive mode. Fo nation of a specifi	erformed in isocratic retection was carried or or each constituent of Conference or and			
	C ₈₋₁₈ -TMAC	Mass trans	sitions				
	C ₈ -TMAC	172.24→60.17 (quai 172.24→57.18 (conf	ntification)				
	C ₁₀ -TMAC	200.27→60.17 (quantification) 200.27→57.18 (confirmation) 228.30→60.17 (quantification) 228.30→57.18 (confirmation) 256.33→60.17 (quantification) 256.33→57.18 (confirmation) 284.43→60.17 (quantification) 284.43→57.18 (confirmation) 312.46→60.17 (quantification) 312.46→57.18 (confirmation)					
	C ₁₂ -TMAC						
	C ₁₄ -TMAC						
	C ₁₆ -TMAC						
	C ₁₈ -TMAC						
	The following information was available in the original study report as regards to investigated water matrices:						
	Type	Ground water	Surface water	Tap water			
	Origin	Glück auf Straße 32 D-31157 Sarstedt	31180 Ahrbergen Geographical coordinates: 52°13'38.00'' N and 9°5'52.22'' E	At the test facility			
	pH	7.39	8.79	8.54-8.65			
	Conductivity [μS/cm]	900	473	168-171			
	Dissolved oxygen [%]	9.28	8.89	926			
	DOC [mg/L]	1.55	>100	F			
			< 0.04	3-4			
	Ammonium-N [mg/L] Nitrate-N [mg/L]	0.04 11.8	<0.3				

Additional validation was carried out at 0.014 μ g/L and 0.140 μ g/L for each constituent of C₈₋₁₈-TMAC (C8-TMAC, C10-TMAC C12-TMAC, C14-TMAC, C16-TMAC and

Solutions of mixed standards at 7 different concentration levels were used for calibration.

C18-TMAC). Water fortification was performed using the relevant standards.

Akzo Nobel Surface Chemistry AB	C ₈₋₁₈ -TMAC	May 2014
RMS: Italy		

Conclusion	The LC-MS/MS method submitted in May 2012 for the analysis of C_{8-18} -TMAC residues down to a level of 0.1 μ g C_{8-18} -TMAC/L in ground-, surface- and drinking-water meets the requirements provided for by SANCO/825/00 and the Additional Guidance to TNsG on Data Requirements on analytical methods. The method supports the residue definition. The method is highly specific (LC-MS/MS, with two ion transitions validated), linear over the range 0.01 - 1.04 μ g C_{8-18} -TMAC/L in matrix, accurate (with recovery rates at LOQ and 10xLOQ in the acceptable range 70 - 120%) and precise (%RSD _{n = 5} < 20% for either fortification level). Ground- and drinking-water: the LOQ (as the lowest validated fortification level) complies with the EU water limit of 0.1 μ g/L. Surface water: the LOQ (as the lowest validated fortification level) complies with the relevant endpoint (<noec <math="" =="">2.5 μg/L; read-across from C_{12-16}-BKC data). Satisfactory results in terms of recovery rates and %RSD_{n = 5} were also obtained for individual constituents of C_{8-18}-TMAC (C8-TMAC, C10-TMAC C12-TMAC, C14-TMAC, C16-TMAC and C18-TMAC) at 0.014 μg/L and 0.140 μg/L each.</noec>
Reliability	2
Acceptability	Acceptable

Remarks

- X Minor deviations from SANCO/825/00 rev. 7 have occurred (see general remark below). Also note that rev. 8.1 (16/11/2010) is now available for the Guideline.
- X1-7 concentration levels (with single determination) were considered (calibration in solvents). The linearity range of $1-100~\mu g/L$ for each constituent of C_{8-18} -TMAC corresponds to $0.010-1.04~\mu g~C_{8-18}$ -TMAC/L in matrix (inferred by the RMS according to the information on sample preparation available in the study report and taking into account that the % of C12-TMAC in C_{8-18} -TMAC is 53.5%).

Linearity curves:

C ₈₋₁₈ -TMAC	Mass transition	Curve equation	r ²
C ₈ -TMAC	172.24→60.17 (quantification)	y = 1939.74x	0.999919
	172.24→57.18 (confirmation	y = 647.446x	0.999884
C ₁₀ -TMAC	200.27→60.17 (quantification)	y = 1953.15x	0.999961
	200.27→57.18 (confirmation)	y = 690.483x	0.999882
C ₁₂ -TMAC	228.30→60.17 (quantification)	y = 1835.66x	0.999945
	228.30→57.18 (confirmation)	y = 629.737x	0.999758
C ₁₄ -TMAC	256.33→60.17 (quantification)	y = 1597.1x	0.999744
	256.33→57.18 (confirmation)	y = 509.379x	0.999456
C ₁₆ -TMAC	284.43→60.17 (quantification)	y = 1543.68x	0.999779
	284.43→57.18 (confirmation)	y = 477.949x	0.999838
C ₁₈ -TMAC	312.46→60.17 (quantification)	y = 1296.88x	0.999556
	312.46→57.18 (confirmation)	y = 370.575x	0.999068

- X2 Since two mass transitions have been investigated, the submitted LC-MS/MS can be concluded to be highly specific.
- X^* Spiking solutions I to IV of the test item (lyophilized Arquad C-35) are erroneously reported (also in the original study report) to be "mixed standard spiking solutions diluted by a total factor of ... from the stock solution" instead of "dilution by total factor of ... from the stock solution of TMAC".
- X^{**} To investigate matrix effects, the response of C_{8-18} -TMAC in matrix as well as the response of individual standards in matrix were also considered. According to the original study report, solutions were prepared by fortification of a control sample with lyophilized Arquad C-35 or with the relevant standards, respectively. Satisfactory recovery rates were obtained.

General remarks:

- no spectrum of the product ions has been provided in the original study report. The selection of the ions used for quantification/confirmation has not been justified, either.
- eCA-IT considers C18-unsaturated as not part of the residue definition. Though available in the original study report, validation data relevant to C18-unsaturated have not been taken into account by RMS-IT (ISSUE TO BE DISCUSSED AT WG LEVEL).

	EE V EE).
	COMMENTS FROM
Date	Give date of comments submitted
Results and discussion	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state
Conclusion	Discuss if deviating from view of rapporteur member state
Reliability	Discuss if deviating from view of rapporteur member state
Acceptability	Discuss if deviating from view of rapporteur member state
Remarks	