

National Institute for Public Health and the Environment *Ministry of Health, Welfare and Sport*

Reproductive Toxicology and the road to Animal-free Human Hazard and Risk Assessment

Aldert H. Piersma

Center for Health Protection RIVM Bilthoven-NL

ECHA NAM Workshop, Helsinki, 31 May 2023

Test animal need for different endpoints (% of total test animals needed)

Current issues with reproductive toxicity testing

- The triggers for generating a second-generation offspring in OECD443
- The requirement for an OECD443 after observing thyroid changes in other studies
- The need to study endocrine disruption after observing liver enzyme induction effects
- The requirement for extreme high dosing for less potent compounds
- The need to accept extreme general toxicity in parental animals in order to find a LOAEL for fertility or developmental effects

Underlying issues:

- Executing risk management based on hazard identification only, without consideration of realistic exposure scenarios and compound potency
- The tendency to consider changes in physiological parameters as an indication of adversity
- Distinguishing adaptive homeostatic changes from adverse health effects
- The ethical limits of animal welfare and suffering

Classic List of Alternatives in Developmental Toxicology

type of test	test	end points
continuous cell lines	HEPM MOT V79 N115 EC/EST	proliferation adhesion metabolic cooperation differentiation differentiation
primary cell cultures	brain limb bud	differentiation differentiation
organ cultures	limb bud	development
embryo cultures	Hydra frog rodent	regeneration development development

Embryonic stem cell test (cardiac)

Embryonic stem cell culture

Hanging drop culture

Embryoid Bodies (day 3)

Embryoid Body (day 5)

Embryoid Body (day 10)

Van Dartel et al., 2009

Limited biological domain of any in vitro test precludes that it will correctly 'predict' all toxicants.

Cf. The Virtual Physiological Human: vph-institute.org

Animal-free hazard assessment

Test system requirements

- Biological domain
 - Describes the biology of the system in terms of MoA, AOP, key event(s) covered, and end point measured
- Technical performance
 - Standardization, variability, transferability
- Chemical domain
 - Solubility, volatility, ...
- Sensitivity / specificity
 - Validate each individual test with known positives and known negatives against its biological domain only, "mechanistic validation" *
 - Validate test battery as a whole against in vivo toxicity, based on sufficient mechanistic coverage of biology/toxicology

CellDesigner map for neural tube closure

Cf. US EPA Virtual Embryo Project

Synthetic dose-response BMP inhibition/activation

CompuCell3D animation Berkhout et al., in progress

Animal-free human hazard assessment

Take home messages

- Current regulatory hazard-based risk management based on animal study protocols meets with serious issues regarding interpretation and animal welfare.
- Computational approaches based on the toxicological ontology offer innovative opportunities.
- Clinical diagnostics and treatment now successfully uses computational models using personalized patient parameter input.
- The US EPA Virtual Embryo project shows proofs of principle of computational prediction of dose-related compound-induced adverse health effects.
- The Virtual Physiological Human project provides the physiological basis for computational modelling.
- Test batteries comprehensively covering the AOP-network provide data input for computational models.
- Current international projects (ONTOX, VHP4Safety) exploit and build on this principle.

Selected references

- The Virtual Physiological Human: https://www.vph-institute.org/
- Computational diagnostics: Van Schalkwijk et al., 2010 Briefings in Bioinform. 11(4):403-416.
- US EPA Virtual Embryo: https://www.epa.gov/, search term `virtual embryo'
- ONTOX: https://ontox-project.eu/
- VHP4safety: https://www.sciencrew.com/c/6586?title=VHP4Safety
- Piersma et al., Toxicol In Vitro. 2018 Feb;46:163-165.
- Piersma et al., Current Opinion in Toxicology, https://doi.org/10.1016/j.cotox.2019.03.009.
- Heusinkveld et al., Reprod Toxicol. 2021 Jan;99:160-167.
- Piersma et al., Curr Res Toxicol. 2022 May 13;3:100074.
- Piersma et al., Current Opinion in Toxicology 2023, 33:100386.
- Bridges et al., Regulatory Toxicology and Pharmacology 139 (2023) 105356.

