

Skin Sensitisation Examples

Introduction to OECD QSAR Toolbox

17 June 2015

Tatiana Netzeva Computational Assessment and Dissemination Unit European Chemicals Agency

Purpose of ECHA examples:

- To address specifically the REACH registrants
- To try to translate the science into regulatory language
- To increase the transparency of a complex tool
- To re-iterate the Toolbox philosophy for a prediction
- To illustrate the Toolbox flexibility
- To facilitate the development of adaptations
- To promote the use of alternatives for REACH

Outline of this presentation

On prediction of skin sensitisation

 A straight-forward example
 Example with activation: transformations including skin metabolism and auto-oxidation

Objectives of this presentation:

To demonstrate the following:

- Input and profiling the target chemical
- Identifying analogues of the target chemical
- Filling data gaps for target chemical by read-across
- Profiling target chemical taking into account its (a)biotic activation (by simulating skin metabolism and autooxidation products)
- Collect mechanistic analogues depending on the products
- Filling data gaps by read across when (a)biotic activation is taken into account (final structural refinement)

Recommended Category formation process

The skin sensitisation endpoint

- In Annex VII of REACH (for more than 1 tpa)
- The information requirement can be adapted:
 - According to column 2 of the Annex
 - According to Annex XI
- The Murine Local Lymph Node Assay (LLNA) is recommended
- Guinea Pig Maximisation Test (GPMT) is still sometimes used
- No requirement for testing proposal in Annex VII, BUT
- New animal studies to be conducted only as a last resort

Relevant databases and profilers

Relevant databases:

- "Skin sensitisation", which includes more than 1 035 chemicals (includes the OASIS skin sensitisation database)
- "Skin sensitisation ECETOC", with 39 chemicals
- ECHA Chem currently brings more than 1 000 studies to the Toolbox

For classification purposes, the thresholds in the CLP Regulation and the respective guidance should be checked.

Relevant profilers:

- Protein binding by OASIS (101 categories)
- Protein binding by OECD (102 categories)
- Protein binding potency (90 categories)
- Protein binding alerts for skin sensitisation by OASIS (100 categories)

A straight-forward example

Step-by-step example on how to predict the skin sensitisation potential approach of a chemical by read-across based on an analogue approach (for beginners)

<u>pdf</u>

<u>video</u>

Input of chemical (CAS 122-04-3)

Search by C	AS#	Tautomeric se	ts Selected 1 of 1			V OK	Cancel
Selected		Invert Selectio		Names	CAS/Name	2D Name	CAS/2D
1. Yes	122-04-3	0=C(Cl)c10		1: p-nitrobenzoyl chloride 2: benzoyl chloride, 4-nitr 3: 4-nitrobenzoyl chloride 4: benzoyl chloride, p-nitr	1: Bacte 2: DSST 3: Geno 2: High Qua 1: Cana 2: METI 3: NICN. 4: Phys- 5: TSCA 6: US H 3: High Qua 1: ECHA 2: EINEC 3: METI 4: REAC 5: US H	1: Bacteria 2: Genoto: 3: DSSTO 2: High Qualit 1: Phys-ch 2: Canada 3: TSCA 4: METI Ja 5: NICNAS 6: US HPV 3: High Qualit 1: REACH 2: ECHA P 3: METI Ja 4: EINECS 5: US HPV	1: High Qualit 1: Bacl 2: Can 3: DSS ▲ 4: ECH 5: EINE 6: Gen 7: MET 8: NICl 9: Phy: 10: RE ▲ 11: TS 12: US ▲ 13: US

Profiling for protein binding

QSAR TOOLBOX	(+) []] ▶ Input ▶ Profiling	Endpoint Category Definition	01010 01 1 10100 • Data Gap Filling	▶ Report
Profiling Profiling Schemes Image: Scheme state st				The OEC for Grou into Cate Develop
Profiling methods	Filter endpoint tree	1 [target]		
Select All Unselect All Invert Ionization at pH = 9 Ionization binding by OASIS v1.2 Protein binding by OECD Protein binding potency Superfragments Toxic hazard dassification by Cramer (Toxic hazard dassification by Cramer (Utimate biodeg	Structure			
Endpoint Specific				
Acute aquatic toxicity classification by				
Acute aquatic toxicity MOA by OASIS				
Bioaccumulation – metabolism alerts	Ecotoxicological Information			
Bioaccumulation – metabolism half-lives	⊞Human Health Hazards			
Biodegradation fragments (BioWIN MIT				
Carcinogenicity (genotox and nongend DNA alerts for AMES_MN and CA by O	Hereita Mechanistic			
Eye irritation/corrosion Exclusion rules Eye irritation/corrosion Inclusion rules in vitro mutagenicity (Ames test) alerts in vivo mutagenicity (Micronucleus) ale	Protein binding by OASIS v1.2	Acylation Acylation >> Direct acylation involving a Acylation >> Direct acylation involving a Acylation	a leaving group a leaving group >> (Thio)Ad	cyl and (thio)carbamoyl halides and cyanides
Keratinocyte gene expression Oncologic Primary Classification	Protein binding by OECD	Acylation >> Direct Acylation Involving Acylation >> Direct Acylation Involving	a Leaving group a Leaving group >> Acyl h	alides (including benzyl and carbamoyl deriv.)
 Protein binding alerts for skin sensitiza rtER Expert System ver. 1 - USEPA 	Endpoint Specific			
Skin irritation/corrosion Exclusion rules Skin irritation/corrosion Inclusion rules Empiric	Protein binding alerts for sk	Acylation Acylation >> Direct acylation involving a Acylation >> Direct acylation involving a	a leaving group a leaving group >> (Thio)Ad	cyl and (thio)carbamoyl halides and cyanides
Chemical elements				

MoA Explanation: Acyl halides

<u>Mechanistic Domain</u>: Acylation Mechanistic Alert: Direct acylation involving a leaving group

Structural Alert: Acyl halides

This category includes chemicals that potentially can cause skin sensitization effect as a result of protein conjugation via Nucleophilic substitution on acyl halides.

The possible structural alert acting by this mechanism is illustrated below:

$$\begin{array}{c} O \\ R - C \\ Hal \end{array} \xrightarrow{Pr - NH_2} R - C \\ Hal \end{array} \xrightarrow{O} H Hal$$

Hal = F, Cl, Br, IR = alkyl, aryl

Acyl halides are compounds that have a halogen atom in place of OH group of acids. The nucleophile attacks the carbonyl carbon forming a tetrahedral intermediate. When the tetrahedral intermediate collapses, the weaker base is eliminated. If the nucleophile is neutral, the mechanism has an additional step. A proton is lost from the tetrahedral intermediate formed in the first step, resulting in a tetrahedral intermediate equivalent to the one formed by negatively charged nucleophiles. This tetrahedral intermediate expels the weaker of the two bases- the newly added group after it has lost a proton or the group that was attached to the acyl group in the reactant. Halogen ions are weaker bases than the amino groups in proteins.

These reactions are called nucleophilic acyl substitution reactions because a nucleophile (protein molecule) has replaced the substituent that was attached to the acyl group in the reactant. It is also called an acyl transfer reaction because an acyl group has been transferred from one group to another.

Data gathering

OSAR TOOLBOX	⑦ (1)	Ê		01010 01 1 10100		🕤 🕝 🔕 🔧 About Undate
	▶ Input ▶ Profiling	▶ Endpoint ▶ Cat	egory Definition → D	Data Gap Filling	▶ Report	
Data Import	Export D	elete Tautomeriz	e			for Grouping Chemicals
<u>G</u> ather <u>I</u> mport I <u>U</u> CLID5 <u>E</u>	xport <u>I</u> UCLID5 <u>D</u> atabase	Inventory Database				Developed by LMC, Bulgaria
Databases	Filter endpoint tree		1 [target]			
Select All Unselect All Invert About Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Phuman Health Hazards Bacterial mutagenicity ISSSTY Carcinogenic Potency Database (CPDB) Carcinogenicity&mutagenicity ISSCAN Cell Transformation Assay ISSCTA	Structure		o≓ N=0			
Dendritic cells COLIPA						
Developmental toxicity ILSI ECHA CHEM		3	Data			23
ECOTOX	HEnvironmental Fate and Iran	sport		Data is extrac	ted from the selected databases only	
Estrogen Receptor Binding Affinity OASIS	Human Health Hazards			Data is extrac	ted from the selected databases only.	
Genotoxicity OASIS	Acute Toxicity	1				
Micronucleus ISSMIC	- ⊞Carcinogenicity					
	Developmental Toxicity / Te	ratogenicity		Do not show this messa	вде 💽 🗸 ОК	
Rep Dose Tox Fraunhofer ITEM	- Genetic Toxicity					
Repeated Dose Toxicity HESS	Immunotoxicity					
Skin irritation		4				
Skin sensitization	- Repeated Dose Toxicity					
Skin sensitization ECETOC		AOF				
ToxRefDB US-EPA		*				
Yeast estrogen assay database Universit	-⊞In Chemico					
	-⊞In Vitro				ata fau	
	- In Vivo			\mathbf{O} \mathbf{U}	ala ioui	
	-⊞GPMT					
Inventories						
Select All Unselect All Invert About	EC3					
Canada DSL	HE Toxicity to Reproduction	and Distribution				
	TOXICONITETICS, Metabolish					
ECHA PR						
HPVC OECD						
METI Japan NICNAS						
REACH ECB						
US HPV Challenge Program						

Structure based grouping and profiling of the analogues

QSAR TOOLBOX	Imput Imput	Endpoint	Category Defin	010 01 101 ition → Data Ga	10 10 10 10 10 10	► Preport			⑤ @ 😣 🔧 <u>A</u> bout <u>U</u> pdate
Profiling Profiling Schemes Image: Second sec								The OECD for Groupi into Categ Developed	QSAR Toolbox ng Chemicals Jories I by LMC, Bulgaria
Profiling methods	Filter endpoint tree	2	3	4	5	6	7	8	9
Select All Unselect All Invert Protein binding potency Superfragments Toxic hazard classification by Cramer (Toxic hazard classification by Cramer (Ultimate biodeg Endpoint Specific Acute aquatic toxicity classification by Acute aquatic toxicity MOA by OASIS	Structure		c1 c1	مىرىمە ئۇرىمىرىيە ئۇرىمىرىيە ئۇرىمىرىيە ئۇرىغى ئۇرىغى ئۇرىچى ئۇرىچى ئۇرىچى ئۇرىچى ئۇرىكە ئۇرىكە ئۇرىكە ئۇرىكى ئۇرىكە ئۇرىكە	CI CH3 CH3 CH3	ş.	Server and a server and a server a s	مربع	*:c×, c**
Aquatic toxicity classification by ECOS/									
Bioaccumulation – metabolism alerts									
Bioaccumulation – metabolism half-lives Biodegradation fragments (BioWIN MIT									
Carcinogenicity (genotox and nongeno									
DNA alerts for AMES, MN and CA by O	⊞Human Health Hazards (8/8)	M: 0.23 %	M: Strongly	M: 1.8 %	M: Strongly	M: 8.8 %	M: 2.3 %	M: 2.7 %	M: 2.7 %
Eye irritation/corrosion Exclusion rules	⊡Profile								
in vitro mutagenicity (Ames test) alerts	-⊟General Mechanistic								
in vivo mutagenicity (Micronucleus) ale Keratinocyte gene expression Oncologic Primary Classification V Protein binding alerts for skin sensitiza rtER Expert System ver. 1 - USEPA Skin irritation/corrosion Exclusion rules	-Protein binding by OASIS v1.2	Acylation Acylation > Acylation >	Acylation > Acylation > SN2 SN2 >> Nu SN2 >> Nu	Acylation Acylation >> Acylation >>	Acylation Acylation >> Acylation >>	Acylation Acylation >> Acylation >>	Acylation Acylation > Acylation >	Acylation Acylation > Acylation >	Acylation Acylation > Acylation >
Skin irritation/corrosion Indusion rules Empiric Chemical elements Groups of elements Upinski Rule Oasis Organic functional groups	Protein binding by OECD	Acylation Acylation > Acylation >	Acylation Acylation > SN2 SN2 >> SN SN2 >> SN	Acylation Acylation >> Acylation >>	Acylation Acylation >> Acylation >>	Acylation Acylation >> Acylation >>	Acylation Acylation > Acylation >	Acylation Acylation > Acylation >	Acylation Acylation > Acylation >
Metabolism/Transformations	Endpoint Specific								
Select All Unselect All Invert Documented	Protein binding alerts for skin	Acylation Acylation > Acylation >	Acylation Acylation > Acylation >	Acylation Acylation >> Acylation >>	Acylation Acylation >> Acylation >>	Acylation Acylation >> Acylation >>	Acylation Acylation > Acylation >	Acylation Acylation > Acylation >	Acylation Acylation > Acylation >

Data gap filling

QSAR TOOLBOX	→ CT → Input → Profiling	Endpoint → Ca	itegory Definition	01010 01 1 10100 • Data Gap Filli	ng Preport		🌀 🕝 ⊗ <u>A</u> bout <u>U</u> pdate
Filing \$ Apply						The (for G into (Deve	OECD QSAR Toolbox irouping Chemicals Categories Iloped by LMC, Bulgaria
Data Gap Filling Method	Filter endpoint tree		1 [target]	2	3	4	5
© Read-across							
 Trend analysis 			, ci				
Q)SAR models					CI CH3	cı ≽≕o	- «°
Target Endpoint	Structure			سمى ا	- / //-снз Осн-		HaC CHa
Human Health Hazards Sensitication Skin In Vivo			o ^{N=0}	°*	C113	CI	CH3 CH3
LLNA EC3				6			
	⊞Substance Identity				Possible data inconsistency		<u> </u>
					▷ · Scale/Unit		
	⊞Environmental Fate and Transport						
	Ecotoxicological Information						
	Human Health Hazards						
	-⊞Acute Toxicity	_					
	- ECarcinogenicity						
		icity Starting a	ap filling				
			- fj				
	Immunotoxicity						
	→ Irritation / Corrosion						
	Hereated Dose Toxicity	AOÉ	5		Gap filling scale/unit		-
					Skin sensitization EC3(ratio) Skin sensitisation I (Oasis)		
					 Skin sensitisation II (ECETOC) Skin Sensitization (Danish EPA) 		
		(8/8)		M: 8.8 %			2.7 %
		(0,0)		9	Selected [6/8] points		
	- Toxicity to Reproduction					ancel	
	L⊞Toxicokinetics, Metabolism and Dis	stribution					

Structure based grouping (acyl halide) and prediction

An example with (bio)activation

Step-by-step example for predicting skin sensitization accounting for skin metabolism pdf

Input of chemical (CAS 97-53-0)

Search by CAS # 97530 ▼ Tautomeric sets Search ✓ OK X Cancel										
Select All Clear All Invert Selection Selected 1 of 1										
1. Yes	COc1cc(CC=	CH3 OH CH2	1: eugenol (4 2: eugenol 3: 4-allyl-2-m 4: 1-allyl-3-m 5: phenol, 2-r 6: phenol, 4-a 7: 2-methoxy- 8: 2-methoxy- 9: 4-allyl-2-m 10: p-allylgua	14: Micro 15: Micro 16: Phys- 17: REAC 18: Skin s 20: US HF 21: USER 3: Low Qualit 1: Experir 2: USER I 4: Low Qualit 1: Genoto 2: USER I 5: High Quali	14: Chem 15: Dendi 16: Kerat 17: Carcii 18: Cell T 19: Micro 20: Skin s 21: ECHA 3: Low Qualii 1: USER I 2: Experir 4: Low Qualii 1: USER I 2: Genoto 5: High Quali	6: Ce 7: Ch 8: D9 9: De 10: E 11: E 13: E 14: E 15: E 16: C 17: K 18: N 19: N 20: N 21: N				

Profiling and data gathering

Grouping by organic functional groups (OFG)

EUROPEAN CHEMICALS AGENCY Grouping by OFG (nested)

EUROPEAN CHEMICALS AGENCY

Auto-oxidation products

1 [target] 2 [target,transf. product] 3 [target,transf. product] 4 [target,transf. product] Filter endpoint tree... А Structure Substance Identity 97-53-0 -CAS Number N/A N/A N/A Einecs Number:2025891 NA NA NA -Chemical IDs eugenol (4-allyl-2-methoxyph... eugenol 4-allyl-2-methoxy-phenol 1-allyl-3-methoxy-4-hydroxy... phenol, 2-methoxy-4-(2-prop... -Chemical Name phenol, 4-allyl-2-methoxy-2-methoxy-4-(prop-2-en-1-yl)... 2-methoxy-4-(2-propenyl)phenol 4-allyl-2-methoxyphenol p-allylguaiacol -Structural Formula COc1cc(CC=C)ccc10 COC1=CC(=CC=C)... COc1cc(C(C=C)O... COc1cc(CC2CO2)ccc1C Environmental Fate and Transport (2/96) M: Negative, Negative, Nega... M: Positive, Positive, ... Human Health Hazards Profile -General Mechanistic No alert found Michael Addition Radical reactions SN2 SN2 >> Ring opening . Protein binding by OASIS v1.2 Michael Addition >... Radical reactions > ... SN2 >> Ring opening . Michael Addition >... Radical reactions >... Michael addition No alert found No alert found SN2 Michael addition >... SN2 >> Epoxides and. Protein binding by OECD Michael addition > ... SN2 >> Epoxides and... Michael addition > ... Michael addition >... -Endpoint Specific No alert found Michael Addition Radical reactions SN2 Protein binding alerts for skin sensitization by OASI ... Michael Addition >... Radical reactions > ... SN2 >> Ring opening . Michael Addition >... Radical reactions >... SN2 >> Ring opening .

L-🕂 Empiric

EUROPEAN CHEMICALS AGENCY

ECHA Skin metabolism products

Profiling methods	Filter endpoint tree	1 [target]	2	3	4
Select All Unselect All Invert Ionization at pH = 9 Protein binding by OASIS v1.2 Protein binding by OECD Protein binding potency Superfragments Toxic hazard classification by Cramer (Toxic hazard classification by Cramer (Ultimate biodec	Structure	(6) [M]	, C	CH3 CH3 CH3	
Endpoint Specific Acute aquatic toxicity classification by Acute aquatic toxicity MOA by OASIS Aquatic toxicity dassification by ECOS	⊞Environmental Fate and Transport ⊞Ecotoxicological Information ⊞Human Health Hazards (12/191)	M: Negative, Negative, Nega	M: Equivocal, Nega	M: Negative, Negat	M: Negative, Negative,
Bioaccumulation – metabolism alerts Bioaccumulation – metabolism half-lives Biodegradation fragments (BioWIN MIT Carcinogenicity (genotox and nongeng	⊟Profile -⊖General Mechanistic	Michael Addition	Michael Addition	Michael Addition	Michael Addition
Calculation (Corrosion Exclusion rules) DNA alerts for AMES, MN and CA by O Eye irritation/corrosion Exclusion rules I in vitro mutagenicity (Ames test) alerts in vivo mutagenicity (Micronucleus) ale Keratinocyte gene expression Oncologic Primary Classification V Protein binding alerts for skin sensitiza rtER Expert System ver. 1 - USEPA Skin irritation/corrosion Exclusion rules Skin irritation/corrosion Exclusion rules	—Protein binding by OASIS v1.2	Michael Addition >> Quinoid Michael Addition >> Quinoid No alert found Nucleophilic addition Nucleophilic addition >> Add Schiff base formation >> Dir Schiff base formation >> Dir Schiff base formation >> Dir Schiff base formation >> Dir Schiff base formation >> Sc	Michael Addition > Michael Addition >	Michael Addition > Michael Addition > Nucleophilic addition Nucleophilic additio Nucleophilic additio	Michael Addition >> Q Michael Addition >> Q Nucleophilic addition Nucleophilic addition Nucleophilic addition
Empiric Chemical elements Metabolism/Transformations Select All Unselect All Invert Observed Marmalian metabolism Observed Microbial metabolism Observed Rat In vivo metabolism	Protein binding by OECD	Michael addition Michael addition >> Polarise Michael addition >> Polarise Michael addition >> Quinone Michael addition >> Quinone Michael addition >> Quinone No alert found Schiff Base Formers Schiff Base Formers >> Dire Schiff Base Formers >> Dire	Michael addition Michael addition > Michael addition > Michael addition > Michael addition >	Michael addition Michael addition > Michael addition > Michael addition > Michael addition >	Michael addition Michael addition >> P Michael addition >> P Michael addition >> Q Michael addition >> Q
Observed Rat Liver S9 metabolism Simulated Autoxidation simulator		Schiff Base Formers >> Dire Michael Addition	Michael Addition	Michael Addition	Michael Addition
Autoxidabon simulator (alkaline mediun Dissociation simulator Hydrolysis simulator (acidic) Hydrolysis simulator (basic) Hydrolysis simulator (neutral)	Protein binding alerts for skin sensitization by OASI	Michael Addition >> Quinoid Michael Addition >> Quinoid No alert found Schiff base formation Schiff base formation >> Sc	Michael Addition > Michael Addition >	Michael Addition > Michael Addition >	Michael Addition >> Q Michael Addition >> Q

Combining transformation products

Combining compounds with the same mechanisms as the target products from skin metabolism and auto-oxidation resulted in:

- More than 900 structures, and
- More than 1 000 data points

After chemical refinement OFG (allyl, phenol, ether), ECETOC

ECHA

EUROPEAN CHEMICALS AGENCY

After chemical refinement OFG (allyl, phenol, ether), EC3 (%)

ECHA

EUROPEAN CHEMICALS AGENCY

After chemical refinement OFG (allyl, phenol, ether), OASIS

ECHA

EUROPEAN CHEMICALS AGENCY

Summary

Step-by-step example for how to use the Toolbox AOP workflow for Skin Sensitization(pdf)

echa.europa.eu

Some learnings:

- The prediction could be relatively simple, sometimes is more difficult, and sometimes looks impossible.
- Check for experimental data (all data principle) first, EC3?
- Source of data should be traceable, data of good quality
- Select analogues by broad structural similarity first
- Consider further (sub)categorisation for consistent mechanism
- If the prediction seems negative, try transformation to check
- Check for data for the predicted transformation products
- Make a conservative estimation toxicological hazard should not be underestimated and the prediction should be useful for C&L and/or risk assessment (consider cut-offs!)

Thank you!

tatiana.netzeva@echa.europa.eu

Subscribe to our news at echa.europa.eu/subscribe

Follow us on Twitter @EU_ECHA

Follow us on Facebook Facebook.com/EUECHA

