VARIABLE DISCOUNT RATES AND NON-STANDARD DISCOUNTING IN MORTALITY RISK VALUATION

Rebecca McDonald

(Warwick University, UK)

Sue Chilton Mike Jones-Lee Hugh Metcalf (Newcastle University, UK) and

Daniel Read (Warwick University, UK) Robin Cubitt (Nottingham University, UK)

The Leverhulme Trust

THE UNIVERSITY OF WARWICK

Background

- Reducing exposure to carcinogens can reduce risk of fatality after a latency period.
- How to value this in BCA?
 - WTP-based Valuation of Statistical Life (cancer)
 - Discounted for delay
- Others studies how much people discount cancer risk reductions.
 - Hammitt & Liu (2004)
 - Alberini et al (2002)
- We ask what discounting *function* is used.

What do we know?

- Cancer VSL includes offsetting of dread effects and latency (see Sue Chilton's talk tomorrow)
- Delay makes the risk 'less bad' (reduces weight)
- (Some) rates derived from survey data
 - Majority between 1.5 and 11% (Viscusi and Moore (1989), Horowitz and Carson (1990) Ganiats et al. (2000) Hammitt and Liu (2004), Alberini et al. (2006)).
 - Some 0% (Alberini and Ščasný (2011, 2013))
 - Or even 22% (Lazaro et al, (2001))
- Usual assumption is exponential discounting

What do we know?

- Discounting functional forms
 - Exponential: constant rate, consistent decision making.
 - Hyperbolic: discount rate declines with delay, inconsistency.
 - Sub-additive: discount rate declines with interval, inconsistency.
 - Looks like hyperbolic if sooner outcome is "now".

Research overview

- Elicit discount rates from risk-risk survey data
- Investigate the elicited discount rates for sensitivity to
 - Delay (-> hyperbolic)
 - Interval (-> subadditive)
- So we need one more ingredient... how to elicit a discount rate from survey data

A relationship between road accident and cancer VSL estimates

• $R_t = R_0 * \partial_t$

– where ∂_t is the discount factor

•
$$C_t = R_t * (1+x)$$

- where (1 + x) is the context premium placed on cancer, *ceteris paribus*

• In combination:

 $C_T = (R_0 * (1+x)) * \partial_T$

• VSL cancer at time T relative to VSL road accidents at time $t = C_T R_t = (1 + x) * \partial_T / \partial_t$

From $C_T R_t$ to a discount rate

- Take one relativity for cancer at T and road accidents at t $C_T R_t$
- Take a second relativity for cancer at T' and road accidents at t' $C_{T'}R_{t'}$
- Assume exponential discounting

$$C_T R_t = (1+x) * \frac{1}{(1+r)^{(T-t)}}$$
$$C_{T'} R_{t'} = (1+x) * \frac{1}{(1+r)^{(T'-t')}}$$

• Take the ratio of these relativities

$$\frac{C_T R_t}{C_{T'} R_{t'}} = \frac{(1+r)^{(T'-t')}}{(1+r)^{(T-t)}} = (1+r)^{(T'-t'-(T-t))}$$
$$r = \frac{(T'-t'-(T-t))}{\sqrt{\frac{C_T R_t}{C_{T'} R_{t'}}}} - 1$$

Research design

- Risk-Risk trade-off study
- 1h45m in our laboratory
- 10 main relativity questions varying T and t
- Follow up: Demographics.

Relativities

- Ten relativities per respondent, all compared Cancer risk at T to Road accident risk at t.
- Designed to test the exponential, hyperbolic and sub-additive discounting hypotheses.

Question	Codo	Delay until Cancor fatality	Delay until Boads	Interval	Average	
number	Coue	Cancer latanty	fatality	(years)	(years)	
1	$C_{10}R_{1}$	10	1	9	5.5	
2	$C_{10}R_2$	10	2	8	6	
3	$C_{25}R_2$	25	2	23	13.5	
4	$C_5 R_2$	5	2	$3 \leftarrow$	3.5	Same
5	C_7R_2	7	2	$5 \leftarrow$	4.5	<u>Daterval</u> ,
6	$C_{15}R_2$	15	2	13-	8.5	different
7	$C_{10}R_{5}$	10	5	$5 \leftarrow$	7.5	
8	$C_{10}R_{7}$	10	7	3←	8.5	aree ayage
9	$C_{25}R_{10}$	25	10	15	17.5	denevent
10	$C_{10}R_{10}$	10	10	0	10	Interval

Question Layouts

Question Layouts

50m-15		
QUE	ESTION 2	
Your Whi	r current risk of dying by each cause is 1000 in ch would you choose, if you had to:	60 million.
	c	D
	An increase in my risk of dying in a car accident during the year after next (2014) of 50 in 60 million	An increase in my risk o dying from cancer 10 years from now of 50 in 60 million
	NOW Yes	90 319870481 31987048 NOV P 199 798 999
	QUI You Whi	QUESTION 2 Your current risk of dying by each cause is 1000 in Which would you choose, if you had to: C An increase in my risk of dying in a car accident during the year after next (2014) of 50 in 60 million

This respondent
switched 'at 280',
giving a relativity
of $C_{10}R_2 = 280/50$
= 5.6

С		D	
Dying in a car		Dying from cancer 10	
accident during the		years from now	
year after next			
1000 in 60 million		1000 in 60 million	CHOICE:
RISK INCREASE :	•		
50 in 60 million	OR	50 in 60 million	с
100 in 60 million	OR	50 in 60 million	С
140 in 60 million	OR	50 in 60 million	С
180 in 60 million	OR	50 in 60 million	С
220 in 60 million	OR	50 in 60 million	С
260 in 60 million	OR	50 in 60 million	С
300 in 60 million	OR	50 in 60 million	D
340 in 60 million	OR	50 in 60 million	D
380 in 60 million	OR	50 in 60 million	D
420 in 60 million	OR	50 in 60 million	D
	OR	50 in 60 million	D

Sample

Variable	Average
Gender (% female)	44.5%
Age (mean (std dev.))	20.72
Household size (mean (s. dev.))	(1.82) 4.41
Rental (% rent)	$(1.74) \\ 75.2\%$
Personal income (monthly mean (s. dev.))	$\pounds 616.76$ (495.96)
Household income (monthly mean (s. dev.))	$\pounds 3234.31$ (2844.58)
Cancer personal experience* (%)	69.4%
Road accident experience* (%)	48.2%

^{*}personal experience was defined as the respondent or a close friend or family member having experienced cancer or a serious road accident.

Relativities

Question	Code	Latency	Average	Geometric	95%
		interval	Delay	mean	confidence
		(years)	(years)		interval
1	$C_{10}R_{1}$	9	5.5	0.97	[0.59, 1.60]
2	$C_{10}R_2$	8	6	0.72	[0.42, 1.23]
3	$C_{25}R_2$	23	13.5	0.35	[0.21, 0.59]
4	$C_5 R_2$	3	3.5	1.67	[1.08, 2.58]
5	$C_7 R_2$	5	4.5	1.16	[0.71, 1.89]
6	$C_{15}R_2$	13	8.5	0.61	[0.37, 1.01]
7	$C_{10}R_5$	5	7.5	1.02	[0.59, 1.77]
8	$C_{10}R_{7}$	3	8.5	1.67	[1.00, 2.80]
9	$C_{25}R_{10}$	15	17.5	0.49	[0.29, 0.83]
10	$C_{10}R_{10}$	0	10	3.58	[2.37, 5.41]

Elicited discount rates: sample average

		C ₁₀ R ₁	C ₁₀ R ₂	$C_{25}R_2$	$C_5 R_2$	C ₇ R ₂	$C_{15}R_2$	C ₁₀ R ₅	C ₁₀ R ₇	C ₂₅ R ₁₀	C ₁₀ R ₁₀
	Sample Relativities	0.97	0.72	0.35	1.67	1.16	0.61	1.02	1.67	0.49	3.58
$C_{10}R_{1}$	0.97				•					•	•
$C_{10}R_{2}$	0.72	-0.29								•	•
$C_{25}R_{2}$	0.35	0.07	0.05				<u>.</u>				
$C_5 R_2$	1.67	0.	15 /7			~~					
C_7R_2	1.16	0.	$\sqrt{2}$	2.06 —	1 = r						
$C_{15}R_{2}$	0.61	0.									
$C_{10}R_{5}$	1.02	0.01	0.11	0.06	0.25		0.06				
$C_{10}R_{7}$	1.67	0.09	0.17	0.08		0.18	0.10	0.25			
$C_{25}R_{10}$	0.49	0.11	0.06	0.04	0.10	0.09	0.11	0.07	0.10		
C ₁₀ R ₁₀	3.58	0.15	0.20	0.10	0.25	0.23	0.14	0.25	0.25	0.13	

- Assumes exponential discount function
- Elicit sample level discount rates for each combination of relativity pairs
- None possible for $C_{10}R_7$ and C_5R_2 or $C_{10}R_5$ and C_7R_2 because they have the same intervals so the calculation cannot work.

Elicited discount rates: sample average

- Not a clear relationship between elicited discount rate and average delay
- But a clear negative relationship between the discount rate and the interval

Individual discount rate analysis

- 43 discount rates elicited per individual (some fewer, if failed to provide all relativities).
- Pooled for the sample, 4336 individual discount rates
- Regression on the features of the underlying relativities can inform us about the likely discount function for the sample

	Model (1)
	N=4336
Discount rate	$R^2 = 0.0157$
	-0.012***
Latency interval	(0.002)
Average delay	-
	0.229***
Constant	(0.023)

Individual level analysis

- 43 discount rates elicited per individual (some fewer, if failed to provide all relativities).
- For each individual, OLS regression is run.
- Sign and significance of the coefficient on latency and average delay categorise each individual according to likely discounting function.

Classification	Coefficient on	Coefficient on	N (% of usable
	Delay	Interval	sample of 104)
Exponential	insignificant	insignificant	36(34.6%)
Hyperbolic	negative significant	unspecified	16(15.4%)
Subadditive	unspecified	negative significant	43 (41.4%)
Both	negative significant	negative significant	2(1.9%)
Other	unspecified	unspecified	7(8.6%)

Implications for policy

- If exponential assumption is used and discount rate elicited here is respected, policy makers would generate a discounted VSL for a fatality after T years as $VSL_T = \frac{VSL_0}{e^{\delta T}} = \frac{VSL_0}{e^{0.122*T}}$
- However, reanalysis using the subadditive discount factor generates very different estimates of the VSL for medium term fatalities

	Discount factor wi	ith Exponential	Discount factor with Subadditive		
	assump	otion	assumption		
Time from the	(geometric mean (median		(geometric mean	(median	
present (years)	rate = 10.9%)	rate = 6.2%)	rate = 55.8%)	rate = 71.9%)	
0	1	1	1	1	
5	0.58	0.73	0.27	0.48	
15	0.19	0.39	0.10	0.28	
25	0.07	0.21	0.05	0.19	
40	0.01	0.08	0.02	0.12	
60	0.00	0.02	0.01	0.08	

Implications for policy (2)

- If exponential assumption is used and discount rate elicited here is respected, policy makers would generate a discounted VSL for a fatality after T years as $VSL_T = \frac{VSL_0}{e^{\delta T}} = \frac{VSL_0}{e^{0.122*T}}$
- However, reanalysis using the subadditive discount factor generates very different estimates of the VSL for medium term fatalities.

Main Study Summary

- We elicited discount rates from relative risk tradeoffs for cancer and road accident fatalities.
- Analysis suggests that
 - Discounting of mortality risks depends on the interval between the fatality times
 - Sub-additive discounting characterises the majority of the sample
 - A unique discount rate for use in policy may not exist.
- Heterogeneity between individuals characterises both the discount rate and the discount function in mortality risk valuation.

Cross-Modal Discounting

- We elicited discount rates from options differing in cause (cancer and roads) and time (T and t).
- We could have elicited within-cause relativities.
- According to economic theory this should not make a difference.

Cross-Modal Discounting

- We (with D. Read & R Cubitt) found that summed 'cost of delay' (i.e. impatience) is LOWER for cross-modal than uni-modal comparisons. (consumer goods)
- More (excess?) weight placed on delay when it is the only attribute that differs.
- Tricky implications for the appropriate way to elicit discount rates for policy.
- Could explain some of the heterogeneity between existing studies.

Thank you.

rebecca.mcdonald@wbs.ac.uk

References

- Adamowicz, W., Dupont, D., Krupnick, A. and Zhang, J. (2011) 'Valuation of cancer and microbial disease risk reductions in municipal drinking water: An analysis of risk context using multiple valuation methods', *Journal of Environmental Economics and Management*, 61(2), pp. 213-226.
- Alberini, A., Cropper, M., Krupnick, A., & Simon, N. B. (2006). Willingness to pay for mortality risk reductions: Does latency matter?. *Journal of Risk and Uncertainty*, 32(3), 231-245.
- Alberini, A. and Scasny, M. (2010) 'Does the cause of death matter? The effect of dread, controllability, exposure and latency on the Vsl'.
- Alberini, A. and Ščasný, M. (2011) 'Context and the VSL: Evidence from a stated preference study in Italy and the Czech Republic', *Environmental and resource economics*, 49(4), pp. 511-538.
- Cameron, T.A., DeShazo, J.R. and Johnson, E.H. (2009) Willingness to Pay for Health Risk Reductions: Differences by Type of Illness. University of Oregon.
- Cameron, T. A., & DeShazo, J. R. (2013). Demand for health risk reductions. *Journal of Environmental Economics and Management*, 65(1), 87-109.
- Carthy, T., Chilton, S., Covey, J., Hopkins, L., Jones-Lee, M.W., Loomes, G., Pidgeon, N. and Spencer, A. (1999) 'On the Contingent Valuation of Safety and the Safety of Contingent Valuation: Part 2 The CV/SG "Chained" Approach', *Journal of Risk and Uncertainty*, 17 (3), pp. 187-213.
- Davis, L.W. (2004) 'The effect of health risk on housing values: Evidence from a cancer cluster', *American Economic Review*, 94(5), pp. 1693-1704.
- Gayer, T., Hamilton, J.T. and Viscusi, W.K. (2002) 'The market value of reducing cancer risk: Hedonic housing prices with changing information', *Southern Economic Journal*, 69(2), pp. 266-289.
- Ganiats, T.G., Carson, R.T., Hamm, R.M., Cantor, S.B., Sumner, W., Spann, S.J., Hagen, M.D. and Miller, C. (2000) 'Population-based time preferences for future health outcomes', *Medical Decision Making*, 20(3), pp. 263-270.
- Hammitt, J. K., & Liu, J. T. (2004). Effects of disease type and latency on the value of mortality risk. *Journal of Risk and Uncertainty*, 28(1), 73-95.
- Horowitz, J.K. and Carson, R.T. (1990) 'Discounting Statistical Lives', Journal of Risk and Uncertainty, 3 (403), p. 413.
- Lazaro, A., Barberan, R. and Rubio, E. (2001) 'Private and social time preferences for health and money: an empirical estimation', *Health Economics*, 10(4), pp. 351-356.
- Rambaud, S.C. and Ventre, A.G.S. (1998) 'Decomposable Financial Laws and Profitability', *International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems*, 06(04), pp. 329-344.
- Read, D. (2001) 'Is time-discounting hyperbolic or subadditive?', Journal of Risk and Uncertainty, 23(1), pp. 5-32.
- Viscusi, W.K. and Moore, M.J. (1989) 'Rates of time preference and valuations of the duration of life', *Journal of public economics*, 38(3), pp. 297-317.