The Benefits of Avoiding Cancer (or Dying from Cancer):
 Evidence from a Four-country Study

Anna Alberini and Milan Ščasný

University of Maryland
Charles University Environment Center

ECHA Workshop, Helsinki, 11-12 Jan. 2016

Introduction and Motivation

- Environmental, workplace and consumer product regulations can reduce the occurrence of cancer
- Benefit-cost analysis
- Key benefit metrics:
- Value of a Statistical Case of Cancer (VSCC)
- Value of a Statistical Life (VSL) (a.k.a. Value of a Prevented Fatality [VPF])
- Is there a cancer VSL "differential" or "premium"?
- Large risk analysis and psychometrics literature suggests that cancer VSL is different than accidental death VSL

Earlier Empirical Research

- Cancer VSL or VSCC:
- Alberini et al. (2007)
- Tsuge et al. (2005)
- Tonin et al. (2009)
- Cancer premium:
- Cameron et al. (2010)
- Hammitt and Liu (2004)
- Hammitt and Haninger (2010)
- Alberini and Scasny $(2011,2013)$
- OECD (2012)
- Chilton et al. (2013)

Research Questions

- What VSCC and cancer VSL figures should be used in EU/ECHA policy analyses?
- How important are quality of life and pain in explaining the willingness to pay to reduce cancer mortality risks?
- In stated preference studies
- Can respondents handle several quantitative attributes (here, two probabilities and one cost)?
- How do qualitative attributes fare?

Approach

- Stated Preferences
- In each choice card, the respondent must choose between an alternative that reduces risks (at a cost) and the status quo $=$
- = dichotomous-choice (DC) contingent valuation (CV) questions
- Total of 7 DC CV questions per respondent

What Good Are We Valuing?

- Reduction in the risk of dying from cancer
- This risk is the product of
- Risk of getting cancer
- Risk of dying from cancer, conditional on getting cancer in the first place
- Generic cancer (no mention of organs affected, type, etc.)
- Description of quality of life impacts and pain

Attributes and Levels

Reduction in the chance of getting	0 (baseline), 2, 3, 5 in 1000 over
cancer within the next 5 years	5 years
Chance of survival at 5 years (if you get	60% (baseline), $65 \%, 70 \%$ and
cancer)	80%

	Fully active
Effects on everyday activities (if you get	No heavy physical work
cancer)	Unable to work
	Confined to bed half of the time

Pain (if you get cancer) during	Mild pain
treatment, recovery, or any other times	Moderate pain

	110
Cost (euro)	225
	370
540	

Valuation Scenario

- Private, individual action
- The respondent is the only person (in the family, for example) whose cancer risks and survival chances would be affected
- No link to environmental policies or exposure to chemicals
- The risk reductions cost money

Valuation Scenario: Baseline Risks

In real life, risks and survival chances vary continuously with age, but we show the same risks and survival chances to all our respondents (who are aged 4560)

Example Choice Card

Chance of getting cancer over 5 years

Chance of 5-year survival (if you get cancer)

Effects on everyday activities (if you get cancer)

Pain (if you get cancer)

Annual cost for each of the next 5 years (total in parentheses)

Which would you choose?

The current situation
25 in 1000
60%
Unable to work
Mild pain
$\begin{gathered} £ 0 \\ (\text { in total £ } 0) \end{gathered}$

The current

situation

Option A
(reduced
risks)

-10% chance of 5 -year survival

- increased chance to survive

Design

- 32 blocks where the risk-reducing alternative is selected at random from the full factorial design
- QOL and pain always the same for alternative and status quo, but change over the choice cards
- structure of the blocks:

	Blocks 1-16	Blocks 17-32
First 3 choice cards	$\Delta S=0$, only $\Delta R \neq 0$	$\Delta R=0$, only $\Delta S \neq 0$
Choice cards 4-7	ΔS and ΔR are both varied	ΔS and ΔR are both varied

Estimating the VSL -- The Model

$$
W_{T} P_{i j}^{*}=\alpha+\mathbf{Q O L}_{i j} \boldsymbol{\beta}+\text { PAIN }_{i j} \gamma+\Delta \operatorname{MORT}^{1} \text { RISK }_{i j} \delta+\varepsilon_{i j}
$$

Latent WTP

Reduction in the unconditional risk of dying from cancer

Cancer VSL

The Model (cont'd)

But

$\Delta M O R T$ RISK $=\Delta R \cdot\left(1-S_{0}\right)+R_{0} \cdot \Delta S-\Delta R \cdot \Delta S$

Where
$\Delta R=$ reduction in the risk of cancer $\quad \Delta S=$ increase in the chance of surviving cancer
$R_{0}=$ baseline risk of cancer $\quad S_{0}=$ baseline chance of surviving cancer

So...

$$
W T P_{i j}^{*}=\ldots+\delta \cdot\left[\Delta R \cdot\left(1-S_{0}\right)+R_{0} \cdot \Delta S-\Delta R \cdot \Delta S\right]+\varepsilon_{i j}
$$

Estimating the VSL

$$
W T P_{i j}^{*}=\ldots+\delta \cdot\left[\Delta R \cdot\left(1-S_{0}\right)+R_{0} \cdot \Delta S-\Delta R \cdot \Delta S\right]+\varepsilon_{i j}
$$

Only this if choice cards 1-3, blocks 1-16

Only this if choice cards 1-3, blocks 17-32

Estimating the VSCC

$$
W T P_{i j}^{*}=\ldots+\delta \cdot\left[\Delta R \cdot\left(1-S_{0}\right)+R_{0} \cdot \Delta S-\Delta R \cdot \Delta S\right]+\varepsilon_{i j}
$$

So...

$$
V S C C=\frac{\partial W T P^{*}}{\partial \Delta R}=\delta\left(1-S_{0}\right)-\delta \Delta S
$$

- The VSCC declines with the size of the improvement in the chance of survival
- If $\Delta S=0$ (choice cards 1-3, blocks 1-16), then VSCC=VSL× $\left(1-\mathrm{S}_{0}\right)$

Estimation details

- We don't observe the actual WTP
- We only have yes/no responses to each choice card
- Probit model - RHS is augmented with COST
- Random effects probit to allow for correlated responses
- In earlier slides, QoL and Pain are additive-in alternate specifications, they can be entered as interactions with the reduction in the risk of dying
- Country fixed effects always included

Survey Administration

Pilot

- February $25^{\text {th }}-$ March $9^{\text {th }}$ 2014
- CZE and UK
- $\mathrm{N}=276$

Main wave

- March $20^{\text {th }}-$ April 22 ${ }^{\text {nd }}$, 2014
- CZE, ITA, NL, UK
- Final sample $\mathrm{N}=3612$
- Mode of survey administration: CAWI and CASI
- Universe: adults aged 45-60
- Sampling: quotas based on region, age, gender and household income
- $\mathrm{N}=8556$ contacted, $\mathrm{N}=3888$ completed (survey response rate: raw $45 \%, 83 \%$ if we disregard those who were discarded b/c quotas were already met)

The Data:

Sample Sizes

Country	Pilot	Main wave
Czech Republic	148	1145
United Kingdom	128	733
Netherlands	-	910
Italy	-	824
Total	$\mathbf{2 7 6}$	$\mathbf{3 6 1 2}$

The Data: Data Cleaning

- Completed questionnaires $\mathrm{N}=3612$
- No "speeders"
- Speeder = questionnaire completed in less than 13 mins.
- 444 speeders (12.29\%)
- No respondents who failed the probability quiz
- 891 "flunkers" (24.62\%)

The Data: Sociodemographics

Characteristic	Sample mean
Female	0.51
Age	52.22
Household size	2.65
Single	0.17
Couple	0.34
No children	0.71
Children	0.41
Household income (after tax per month, $€$	1,871
PPS)	0.14

The Data: Familiarity with Cancer

	CZE	UK	ITA	NL
Has had a benign tumour	18.4%	15.7%	14.0%	18.0%
Has had cancer	7.4%	12.6%	5.5%	6.4%
Any of the closest family members (e.g., parents, siblings, spouse, or children) have been diagnosed with cancer	51.6%	56.7%	56.1%	61.6%
Believes that there is a predisposition towards cancer in the family	33.4%	21.5%	24.7%	26.1%
Any friends have been diagnosed with cancer	68.2%	65.3%	71.7%	61.9%

The Data: Dread

Description	Percent of the s that rate this th highest level of (5 on scale from
Dying in a car accident	17.64
Dying in a domestic accident	10.52
Surgery on an emergency basis	11.09
Developing a chronic respiratory illness	11.71
Getting cancer	$\mathbf{3 9 . 8 4}$
Becoming paralyzed	37.46
Having a heart attack	24.47
Developing an illness that makes me completely dependent on being taken care of by someone else	48.46

Key Results - t stats in parentheses

	(A): Blocks 1-16	(B): Blocks 17-32	(C): All
	Choice cards 1-3	Choice cards 1-3	blocks, all
	Only $\Delta \mathrm{R}=0$	$\Delta S \neq 0$	choice cards
	Nobs: 3483	Nobs: 3759	Nobs: 16873
QOL=1 dummy	-0.1343	0.1625	-0.0486
	(-1.067)	(1.269)	(-1.175)
QOL=2 dummy	0.0026	0.1762	-0.0892
	(0.018)	(1.107)	(-1.918)
QOL=3 dummy	-0.1701	0.1357	-0.1756
	(-1.148)	(0.827)	(-4.083)
Moderate pain dummy	0.1246	0.0867	0.0190
	(1.311)	(0.977)	(0.620)
\MORTRISK	15023.027	6136.54	5324.53
	(8.070)	(10.175)	(30.271)
Cost	-0.00265	-0.00325	-0.00249
	(-9.223)	(-7.938)	(-25.181)
Implied VSL (mill. PPP euro)	5.676	1.887	2.144
	(s.e. 0.866)	(s.e. 0.284)	(0.102)
Implied VSCC (mill. PPP euro)	$\begin{aligned} & 0.551 \\ & \text { (s.e. } 0.084 \text {) } \end{aligned}$	n / a	Varies with $\Delta \mathrm{S}$

VSCC from all choice cards, all blocks

Value of $\Delta \mathbf{S}=\mathbf{0}$	VSCC (million PPP euro)
No change	0.339
	(s.e. 0.035$)$
5% at 5 years	0.266
	$($ s.e. 0.025$)$
10% at 5 years	0.198
	(s.e. 0.021$)$
20% at 5 years	0.073
	(s.e. 0.032$)$

Effect of...on WTP

- Female: positive but v. small and statistically insignificant
- Age: negligible
- Interacting the mortality risk reduction with QoL and pain dummies: no effect whatsoever

Results: Dread

Cancer dread $=5$	$0.4575^{* *}$
(dummy)	(4.99)
Unconditional mortality	$5321.39^{* *}$
risk reduction	(30.26)
cost	$-0.00249^{* *}$
	(-25.18)

Xtprobit regression also includes country fixed effects, QoL and pain.

Conclusions

- Respondents take into account the quantitative attributes of risks
- Quality of life and pain attributes not important. Why?
- They were varied across choice cards but not across alternatives within a choice card, so maybe respondents didn't pick up on them?
- "Cancer is cancer" and so perhaps respondents didn't distinguish among cases of cancer?
- In hindsight, QoL and Pain not very helpful for cost-benefit policy analyses based on ex ante estimates of cancer/cancer mortality risks associated with exposure to carcinogens

Conclusions - 2

- Subjective dread assessments still matter
- All in all, estimates of the cancer VSL similar to existing figures from other studies, and higher than VSL for any cause of death used for environmental policy purposes in Europe

Thank you!

aalberin@umd.edu milan.scasny@czp.cuni.cz

The Data: Valuation Questions

\% choosing the risk-reducing choice alternative over the current card situation

1	48.26
2	47.76
3	45.71
4	57.45
5	54.68
6	53.13
7	56.09

Percent willing to pay for risk reduction by cost amount

Structure of the questionnaire

- A: Health status
- B: Probability tutorial
- C: Dread
- D: Cancer risks
- E: Effects of cancer on quality of life, social and personal relationships, etc.
- F: Factors affecting cancer
- H: Valuation including de-briefing
- K: Socio-demographics

